Learn R Programming

tsapp (version 1.0.4)

HAC: HAC Covariance Matrix Estimation HAC computes the central quantity (the meat) in the HAC covariance matrix estimator, also called sandwich estimator. HAC is the abbreviation for "heteroskedasticity and autocorrelation consistent".

Description

HAC Covariance Matrix Estimation HAC computes the central quantity (the meat) in the HAC covariance matrix estimator, also called sandwich estimator. HAC is the abbreviation for "heteroskedasticity and autocorrelation consistent".

Usage

HAC(mcond, method = "Bartlett", bw)

Arguments

mcond

a q-dimensional multivariate time series. In the case of OLS regression with q regressors mcond contains the series of the form regressor*residual (see example below).

method

kernel function, choose between "Truncated", "Bartlett", "Parzen", "Tukey-Hanning", "Quadratic Spectral".

bw

bandwidth parameter, controls the number of lags considered in the estimation.

Value

mat a (q,q)-matrix

Examples

Run this code
# NOT RUN {
 
data(MUSKRAT)
y <- ts(log10(MUSKRAT))
n <- length(y)
t <- c(1:n)
t2 <- t^2
out2 <- lm(y ~ t +t2)
mat_xu <- matrix(c(out2$residuals,t*out2$residuals, t2*out2$residuals),nrow=62,ncol=3)
hac <- HAC(mat_xu, method="Bartlett", 4)

mat_regr<- matrix(c(rep(1,62),t,t2),nrow=62,ncol=3)
mat_q <- t(mat_regr)%*%mat_regr/62
vcov_HAC <- solve(mat_q)%*%hac%*%solve(mat_q)/62
# vcov_HAC is the HAC covariance matrix estimation for the OLS coefficients. 
# }

Run the code above in your browser using DataLab