# NOT RUN {
# }
# NOT RUN {
set.seed(1)
T = 100 #sample size
p = 20 # number of variables
b = 5 # number of variables with non-zero coefficients
beta0 = c(rep(10,b), rep(0,p-b))
rho = 0.1 #AR parameter
Cov = matrix(0,p,p)
for(i in 1:p){
for(j in 1:p){
Cov[i,j] = 0.5^(abs(i-j))
}
}
C <- chol(Cov)
X <- matrix(rnorm(T*p),T,p)%*%C
eps <- arima.sim(list(ar=rho), n = T+100)
eps <- eps[101:(T+100)]
Y = X%*%beta0 + eps
reg.lasso.hac1 <- rlassoHAC(X, Y,"Bartlett") #lambda is chosen independent of regressor
#matrix X by default.
bn = 10 # block length
bwNeweyWest = 0.75*(T^(1/3))
reg.lasso.hac2 <- rlassoHAC(X, Y,"Bartlett", bands=bwNeweyWest, bns=bn, nboot=5000,
X.dependent.lambda = TRUE, c=2.7)
# }
Run the code above in your browser using DataLab