# Using Cavari's (2019) approval model
# Cavari's original model: APPROVE ~ APPROVE_ECONOMY + APPROVE_FOREIGN + MIP_MACROECONOMICS +
# MIP_FOREIGN + APPROVE_ECONOMY*MIP_MACROECONOMICS + APPROVE_FOREIGN*MIP_FOREIGN +
# APPROVE_L1 + PARTY_IN + PARTY_OUT + UNRATE +
# DIVIDEDGOV + ELECTION + HONEYMOON + as.factor(PRESIDENT)
approval$ECONAPP_ECONMIP <- approval$APPROVE_ECONOMY*approval$MIP_MACROECONOMICS
approval$FPAPP_ECONFP <- approval$APPROVE_FOREIGN*approval$MIP_FOREIGN
cavari.model <- lm(APPROVE ~ APPROVE_ECONOMY + APPROVE_FOREIGN + MIP_MACROECONOMICS +
MIP_FOREIGN + ECONAPP_ECONMIP + FPAPP_ECONFP +
APPROVE_L1 + PARTY_IN + PARTY_OUT + UNRATE +
DIVIDEDGOV + ELECTION + HONEYMOON + as.factor(PRESIDENT), data = approval)
# Now: marginal effect of X at different levels of Z
interact.adl.plot(model = cavari.model,
x.vrbl = c("APPROVE_ECONOMY" = 0), y.vrbl = c("APPROVE_L1" = 1),
z.vrbl = c("MIP_MACROECONOMICS" = 0), x.z.vrbl = c("ECONAPP_ECONMIP" = 0),
effect.type = "impulse", plot.type = "lines", line.options = "z.lines")
# Use well-behaved simulated data (included) for even more examples,
# using the Warner, Vande Kamp, and Jordan general model
model.toydata <- lm(y ~ l_1_y + x + l_1_x + z + l_1_z +
x_z + z_l_1_x +
x_l_1_z + l_1_x_l_1_z, data = toy.ts.interaction.data)
# Marginal effect of z (not run: computational time)
# Be sure to specify x.z.vrbl orders with respect to x term
if (FALSE) interact.adl.plot(model = model.toydata, x.vrbl = c("x" = 0, "l_1_x" = 1),
y.vrbl = c("l_1_y" = 1), z.vrbl = c("z" = 0, "l_1_z" = 1),
x.z.vrbl = c("x_z" = 0, "z_l_1_x" = 1,
"x_l_1_z" = 0, "l_1_x_l_1_z" = 1),
z.vals = -2:2,
effect.type = "impulse",
plot.type = "lines",
line.options = "z.lines",
s.limit = 20)
# Heatmap of marginal effects, since X and Z are actually continuous
# (not run: computational time)
if (FALSE) interact.adl.plot(model = model.toydata, x.vrbl = c("x" = 0, "l_1_x" = 1),
y.vrbl = c("l_1_y" = 1), z.vrbl = c("z" = 0, "l_1_z" = 1),
x.z.vrbl = c("x_z" = 0, "z_l_1_x" = 1,
"x_l_1_z" = 0, "l_1_x_l_1_z" = 1),
z.vals = c(-2,2),
effect.type = "impulse",
plot.type = "heatmap",
heatmap.options = "all",
s.limit = 20)
Run the code above in your browser using DataLab