Learn R Programming

tsforecast (version 1.3.0)

tsmodeleval: Goodness of Fit of a Time Series Model

Description

The function `tsmodeleval` can be used to evaluate the goodness of fit of a time series model.

Usage

tsmodeleval(object)

Value

A list with the following model evaluation criteria:

ME

mean error

RMSE

Root mean square error

MAE

mean absolute error

MPE

mean percentage error

MAPE

mean absolute percentage error

MASE

mean absolute scaled error

MASE.S

seasonal mean absolute scaled error

ACF1

lag 1 autocorrelation

Arguments

object

a time series model of class `tsarima`, `tsesm`, or `tsmovav`. It can also be a list with at least the two elements: `x` and `fitted`.

Author

Ka Yui Karl Wu

References

Hyndman, R. J., Athanasopoulos, G. (2021). Forecasting: Principles and practice (3rd ed.). OTexts.
https://otexts.com/fpp3/

Examples

Run this code
tsmodeleval(tsarima(airport$Travellers, 
                    order = c(1, 1, 0), seasonal = c(0, 1, 1),
                    log = TRUE, include.const = TRUE))

Run the code above in your browser using DataLab