Count implicit gaps
count_gaps(.data, .full = FALSE, .name = c(".from", ".to", ".n"))
A tsibble.
FALSE
inserts NA
for each keyed unit within its own period.
TRUE
fills NA
over the entire time span of the data (a.k.a. fully balanced panel).
start()
pad NA
to the same starting point (i.e. min(<index>)
) across units.
end()
pad NA
to the same ending point (i.e. max(<index>)
) across units.
Strings to name new columns.
A tibble contains:
the "key" of the tbl_ts
".from": the starting time point of the gap
".to": the ending time point of the gap
".n": the number of implicit missing observations during the time period
Other implicit gaps handling:
fill_gaps()
,
has_gaps()
,
scan_gaps()
# NOT RUN {
ped_gaps <- pedestrian %>%
count_gaps(.full = TRUE)
ped_gaps
if (!requireNamespace("ggplot2", quietly = TRUE)) {
stop("Please install the ggplot2 package to run these following examples.")
}
library(ggplot2)
ggplot(ped_gaps, aes(x = Sensor, colour = Sensor)) +
geom_linerange(aes(ymin = .from, ymax = .to)) +
geom_point(aes(y = .from)) +
geom_point(aes(y = .to)) +
coord_flip() +
theme(legend.position = "bottom")
# }
Run the code above in your browser using DataLab