powered by
AR model identification using either AIC, AICC, or BIC and MLE, Burg or YW
aic.ar.wge(x, p = 1:5, type = "aic",method='mle')
Criterion used: aic (default), aicc, or bic
Estimation method used: MLE, Burg, or YW
Value of the minimized criterion
AR order for selected model
AR parameter estimates for selected model
White noise variance estimate for selected model
Realization to be analyzed
Range of p values to be considered
Type of model identification criterion: aic, aicc, or bic
Method used for estimation: MLE, Burg, or YW
Wayne Woodward
"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott
data(fig3.18a) aic.ar.wge(fig3.18a,p=1:5,type='aicc',method='burg')
Run the code above in your browser using DataLab