# NOT RUN {
library(mvtnorm)
nsub=600
imp=100
num=2000
set.seed(1)
x1= rnorm(nsub,1,1)
size1<-rmultinom(1,nsub,c(0.15,0.25,0.25,0.35))
x2= matrix(sample(c(rep(0,size1[1,]),
rep(1,size1[2,]),
rep(2,size1[3,]),
rep(3,size1[4,])),replace=F),byrow=250,ncol=1)
sur1<-rnorm(nsub,0,5)
sur2<-rnorm(nsub,3,1)
sur3<-rnorm(nsub,0,1)
sur4<-rnorm(nsub,2,4)
sur5<-rnorm(nsub,0,3)
sigma1<-matrix(0,nrow=num,ncol=num)
diag(sigma1)<-1.5
beta0<-0.5
beta1<-0.3
beta2<-0.3
beta3<-0.3
sbeta1<-rnorm(1,0.5,0.01)
sbeta2<-rnorm(1,0.5,0.01)
sbeta3<-rnorm(1,0.5,0.01)
sbeta4<-rnorm(1,0.5,0.01)
sbeta5<-rnorm(1,0.5,0.01)
#beta matrix#
beta<-as.matrix(cbind(beta0,beta1,beta2,beta3,sbeta1,sbeta2,sbeta3,sbeta4,sbeta5))
beta.no2<-as.matrix(cbind(beta0,beta1,beta3,sbeta1,sbeta2,sbeta3,sbeta4,sbeta5))
beta.sur<-as.matrix(cbind(sbeta1,sbeta2,sbeta3,sbeta4,sbeta5))
#design matrix#
X<-as.matrix(cbind(rep(1,length(x1)),x1,x2,x1*x2,sur1,sur2,sur3,sur4,sur5))
X.no2<-as.matrix(cbind(rep(1,length(x1)),x1,x1*x2,sur1,sur2,sur3,sur4,sur5))
X.sur<-as.matrix(cbind(sur1,sur2,sur3,sur4,sur5))
#mu matrix#
imp1.mu<-matrix(rep(X%*%t(beta),9),nrow=nsub,ncol=(imp*0.9))
imp2.mu<-matrix(rep(X.no2%*%t(beta.no2),1),nrow=nsub,ncol=(imp*0.1))
noimp.mu<-matrix(rep(X.sur%*%t(beta.sur),num-imp),nrow=nsub,ncol=num-imp)
mu.matrix=cbind(imp1.mu, imp2.mu, noimp.mu)
error<-rmvnorm(nsub,mean=rep(0,num),sigma=sigma1,method = "chol")
y<-t(mu.matrix+error)
runs<-ttScreening(y=y,formula=~x1+x2+x1:x2,imp.var=3,data=data.frame(x1,x2),sva.method="two-step",
B.values=FALSE,iterations=100,cv.cutoff=50,n.sv=NULL,train.alpha=0.05,
test.alpha=0.05,FDR.alpha=0.05,Bon.alpha=0.05,percent=(2/3),linear= "ls",
vfilter = NULL, B = 5, numSVmethod = "be",rowname=NULL,maxit=20)
runs$TT.output
runs$FDR.output
runs$Bon.output
# }
Run the code above in your browser using DataLab