# NOT RUN {
# Note: Most of models included in tuts package are computationally intensive. In the example
# below I set parameters to meet CRAN<U+2019>s testing requirement of maximum 5 sec per example.
# A more practical example would contain N=50 in the first line of the code and n.sim=10000.
#1. Import or simulate the data (a simulation is chosen for illustrative purposes):
DATA=simtuts(N=5,Harmonics=c(4,0,0), sin.ampl=c(10,0, 0), cos.ampl=c(0,0,0),
trend=0,y.sd=2, ti.sd=0.2)
y=DATA$observed$y.obs
ti.mu=DATA$observed$ti.obs.tnorm
ti.sd= rep(0.2, length(ti.mu))
#2. Fit the model:
n.sim=10
BFS=tubfs(y=y,ti.mu=ti.mu,ti.sd=ti.sd,freqs='internal',n.sim=n.sim,n.chains=2, CV=TRUE,n.cores=2)
#3. Generate plots and diagnostics of the model (optional parameters are listed in brackets):
plot(BFS,type='periodogram') # spectral analysis (CI, burn).
plot(BFS,type='predTUTS', CI=0.99) # One step predictions (CI, burn).
plot(BFS,type='cv') # 5 fold cross validation plot (CI, burn).
plot(BFS,type='GR') # Gelman-Rubin diagnostics (CI, burn).
plot(BFS,type='mcmc') # mcmc diagnostics.
plot(BFS,type='volatility') # Volatility realizaitons.
# }
Run the code above in your browser using DataLab