The AIC for Tweedie glms
AICtweedie( glm.obj, dispersion=NULL, k = 2, verbose=TRUE)
Returns a numeric value with the
corresponding AIC (or BIC, depending on
a fitted Tweedie glm
object
the dispersion parameter NULL
which means to use an estimate
numeric: the penalty per parameter to be used; the default is
if TRUE
(the default), a warning message is produced about the Poisson case; see the second Note below
Peter Dunn (pdunn2@usc.edu.au)
See AIC
for more details on the AIC;
see dtweedie
for more details on computing the Tweedie densities
Dunn, P. K. and Smyth, G. K. (2008). Evaluation of Tweedie exponential dispersion model densities by Fourier inversion. Statistics and Computing, 18, 73--86. tools:::Rd_expr_doi("10.1007/s11222-007-9039-6")
Dunn, Peter K and Smyth, Gordon K (2005). Series evaluation of Tweedie exponential dispersion model densities Statistics and Computing, 15(4). 267--280. tools:::Rd_expr_doi("10.1007/s11222-005-4070-y")
Jorgensen, B. (1997). Theory of Dispersion Models. Chapman and Hall, London.
Sakamoto, Y., Ishiguro, M., and Kitagawa G. (1986). Akaike Information Criterion Statistics. D. Reidel Publishing Company.
library(statmod) # Needed to use tweedie family object
### Generate some fictitious data
test.data <- rgamma(n=200, scale=1, shape=1)
### Fit a Tweedie glm and find the AIC
m1 <- glm( test.data~1, family=tweedie(link.power=0, var.power=2) )
### A Tweedie glm with p=2 is equivalent to a gamma glm:
m2 <- glm( test.data~1, family=Gamma(link=log))
### The models are equivalent, so the AIC shoud be the same:
AICtweedie(m1)
AIC(m2)
Run the code above in your browser using DataLab