# NOT RUN {
# Set Parameters to Simulate Some Data
nind<-10;ncellsper<-rep(50,nind)
sigma.a<-.5;sigma.b<-.5;phi<-.1
alpha<-c(1,0,-.5,-2);beta<-c(2,0,-.1,.6)
beta2<-c(2,1,-.1,.6)
id.levels<-1:nind;nind<-length(id.levels)
id<-rep(id.levels,times=ncellsper)
sim.seed<-1234
# Simulate individual level covariates
t2d_sim<-rep(rbinom(nind,1,p=.4),times=ncellsper)
cdr_sim<-rbeta(sum(ncellsper),3,6)
age_sim<-rep(sample(c(20:60),size=nind,replace = TRUE),times=ncellsper)
# Construct design matrices
Z<-cbind(scale(t2d_sim),scale(age_sim),scale(cdr_sim))
colnames(Z)<-c("t2d_sim","age_sim","cdr_sim")
X<-cbind(scale(t2d_sim),scale(age_sim),scale(cdr_sim))
colnames(X)<-c("t2d_sim","age_sim","cdr_sim")
# Simulate Data
sim_dat<-matrix(nrow=2,ncol=sum(ncellsper))
for(i in 1:nrow(sim_dat)){
sim_dat[i,]<-simulate_zero_inflated_nb_random_effect_data(ncellsper,X,Z,alpha,beta2
,phi,sigma.a,sigma.b,id.levels=NULL)$Y
}
rownames(sim_dat)<-paste("Gene",1:2)
# Run adhoc.twosigma
adhoc.twosigma(sim_dat[1,],mean_covar = X,zi_covar=Z,id = id)
# }
Run the code above in your browser using DataLab