Learn R Programming

uGMAR (version 1.0.1)

reformConstrainedPars: Reform parameter vector with linear constraints to correspond non-constrained parameter vector.

Description

reformConstrainedParameters reforms parameter vector of a model with linear constrains to the "standard form" so that it's comparable with non-constrained models.

Usage

reformConstrainedPars(p, M, params, StMAR = FALSE, restricted = FALSE, R)

Arguments

p

a positive integer specifying the order of AR coefficients.

M

a positive integer specifying the number of mixture components or regimes.

params

a real valued parameter vector specifying the model.

For non-restricted models:

For GMAR model:

Size \((M(p+3)-1x1)\) vector \(\theta\)\(=\)(\(\upsilon_{1}\),...,\(\upsilon_{M}\), \(\alpha_{1},...,\alpha_{M-1}\)), where \(\upsilon_{m}\)\(=(\phi_{m,0},\)\(\phi_{m}\)\(, \sigma_{m}^2)\) and \(\phi_{m}\)=\((\phi_{m,1},...,\phi_{m,p}), m=1,...,M\).

For StMAR model:

Size \((M(p+4)-1x1)\) vector (\(\theta, \nu\))\(=\)(\(\upsilon_{1}\),...,\(\upsilon_{M}\), \(\alpha_{1},...,\alpha_{M-1}, \nu_{1},...,\nu_{M}\)).

With linear constraints:

Replace the vectors \(\phi_{m}\) with vectors \(\psi_{m}\) and provide a list of constraint matrices R that satisfy \(\phi_{m}\)\(=\)\(R_{m}\psi_{m}\) for all \(m=1,...,M\), where \(\psi_{m}\)\(=(\psi_{m,1},...,\psi_{m,q_{m}})\).

For restricted models:

For GMAR model:

Size \((3M+p-1x1)\) vector \(\theta\)\(=(\phi_{1,0},...,\phi_{M,0},\)\(\phi\)\(, \sigma_{1}^2,...,\sigma_{M}^2,\alpha_{1},...,\alpha_{M-1})\), where \(\phi\)=\((\phi_{1},...,\phi_{M})\).

For StMAR model:

Size \((4M+p-1x1)\) vector (\(\theta, \nu\))\(=(\phi_{1,0},...,\phi_{M,0},\)\(\phi\)\(, \sigma_{1}^2,...,\sigma_{M}^2,\alpha_{1},...,\alpha_{M-1}, \nu_{1},...,\nu_{M})\).

With linear constraints:

Replace the vector \(\phi\) with vector \(\psi\) and provide a constraint matrix \(R\) that satisfies \(\phi\)\(=\)\(R\psi\), where \(\psi\)\(=(\psi_{1},...,\psi_{q})\).

Symbol \(\phi\) denotes an AR coefficient, \(\sigma^2\) a variance, \(\alpha\) a mixing weight and \(v\) a degrees of freedom parameter. Note that in the case M=1 the parameter \(\alpha\) is dropped, and in the case of StMAR model the degrees of freedom parameters \(\nu_{m}\) have to be larger than \(2\).

StMAR

an (optional) logical argument stating whether StMAR model should be considered instead of GMAR model. Default is FALSE.

restricted

an (optional) logical argument stating whether the AR coefficients \(\phi_{m,1},...,\phi_{m,p}\) are restricted to be the same for all regimes. Default is FALSE.

R

Specifies the linear constraints.

For non-restricted models:

a list of size \((pxq_{m})\) constraint matrices \(R_{m}\) of full column rank satisfying \(\phi_{m}\)\(=\)\(R_{m}\psi_{m}\) for all \(m=1,...,M\), where \(\phi_{m}\)\(=(\phi_{m,1},...,\phi_{m,p})\) and \(\psi_{m}\)\(=(\psi_{m,1},...,\psi_{m,q_{m}})\).

For restricted models:

a size \((pxq)\) constraint matrix \(R\) of full column rank satisfying \(\phi\)\(=\)\(R\psi\), where \(\phi\)\(=(\phi_{1},...,\phi_{p})\) and \(\psi\)\(=\psi_{1},...,\psi_{q}\).

Symbol \(\phi\) denotes an AR coefficient. Note that regardless of any constraints, the nominal order of AR coefficients is alway p for all regimes. This argument is ignored if constraints==FALSE.

Value

Returns such parameter vector corresponding to the input vector that is the form describted in params for non-restricted or restricted models (for non-constrained models), and can hence be used just as the parameter vectors of non-constrained models.