reformParameters
takes a parameter vector of any GMAR or StMAR model and returns a list with the
parameter vector in the standard form, parameter matrix containing AR coefficients and component
variances, mixing weights alphas and in case of StMAR also degrees of freedom parameters.
reformParameters(p, M, params, StMAR = FALSE, restricted = FALSE)
a positive integer specifying the order of AR coefficients.
a positive integer specifying the number of mixture components or regimes.
a real valued parameter vector specifying the model.
Size \((M(p+3)-1x1)\) vector \(\theta\)\(=\)(\(\upsilon_{1}\),...,\(\upsilon_{M}\), \(\alpha_{1},...,\alpha_{M-1}\)), where \(\upsilon_{m}\)\(=(\phi_{m,0},\)\(\phi_{m}\)\(, \sigma_{m}^2)\) and \(\phi_{m}\)=\((\phi_{m,1},...,\phi_{m,p}), m=1,...,M\).
Size \((M(p+4)-1x1)\) vector (\(\theta, \nu\))\(=\)(\(\upsilon_{1}\),...,\(\upsilon_{M}\), \(\alpha_{1},...,\alpha_{M-1}, \nu_{1},...,\nu_{M}\)).
Replace the vectors \(\phi_{m}\) with vectors \(\psi_{m}\) and provide a list of constraint matrices R that satisfy \(\phi_{m}\)\(=\)\(R_{m}\psi_{m}\) for all \(m=1,...,M\), where \(\psi_{m}\)\(=(\psi_{m,1},...,\psi_{m,q_{m}})\).
Size \((3M+p-1x1)\) vector \(\theta\)\(=(\phi_{1,0},...,\phi_{M,0},\)\(\phi\)\(, \sigma_{1}^2,...,\sigma_{M}^2,\alpha_{1},...,\alpha_{M-1})\), where \(\phi\)=\((\phi_{1},...,\phi_{M})\).
Size \((4M+p-1x1)\) vector (\(\theta, \nu\))\(=(\phi_{1,0},...,\phi_{M,0},\)\(\phi\)\(, \sigma_{1}^2,...,\sigma_{M}^2,\alpha_{1},...,\alpha_{M-1}, \nu_{1},...,\nu_{M})\).
Replace the vector \(\phi\) with vector \(\psi\) and provide a constraint matrix \(R\) that satisfies \(\phi\)\(=\)\(R\psi\), where \(\psi\)\(=(\psi_{1},...,\psi_{q})\).
Symbol \(\phi\) denotes an AR coefficient, \(\sigma^2\) a variance, \(\alpha\) a mixing weight and \(v\) a degrees of freedom parameter. Note that in the case M=1 the parameter \(\alpha\) is dropped, and in the case of StMAR model the degrees of freedom parameters \(\nu_{m}\) have to be larger than \(2\).
an (optional) logical argument stating whether StMAR model should be considered instead of GMAR model. Default is FALSE
.
an (optional) logical argument stating whether the AR coefficients \(\phi_{m,1},...,\phi_{m,p}\) are restricted
to be the same for all regimes. Default is FALSE
.
Returns a list with...
$params
parameter vector in the standard form.
$pars
corresponding parameter matrix containing AR coefficients and component variances. Column for each component.
$alphas
numeric vector containing mixing weights for all components (also for the last one).
$dfs
numeric vector containing degrees of freedom parameters for all components.
Returned only if StMAR==TRUE
.
This function does not support models parametrized with general linear constraints! Nor does it have any argument checks.