# NOT RUN {
# GMAR process
params12 <- c(-0.3, 0.9, 0.5, 0.1, -0.2, 0.1, 0.6)
simu12 <- simulateGMAR(1, 2, params12, nsimu=100)
# Restricted GMAR process
params12r <- c(1.4, 1.8, 0.9, 0.3, 3.2, 0.8)
simu12r <- simulateGMAR(1, 2, params12r, restricted=TRUE, nsimu=100)
# StMAR process with initial values
params22t <- c(0.1, 0.7, 0.1, 0.5, -0.1, 0.5, -0.2, 0.3, 0.6, 3, 10)
simu22t <- simulateGMAR(2, 2, params22t, StMAR=TRUE, nsimu=100, initvalues=c(0.1, 0.2))
# Restricted StMAR process
params13tr <- c(0.1, 0.2, 0.3, -0.9, 0.1, 0.2, 0.3, 0.45, 0.35, 3, 9, 27)
simu13tr <- simulateGMAR(1, 3, params13tr, StMAR=TRUE, restricted=TRUE, nsimu=100)
# Restricted GMAR process with p=4, where the first three AR coefficients are restricted to be zero
R <- as.matrix(c(0, 0, 0, 1))
params42rc <- c(0.4, 0.5, 0.9, 0.5, 0.6, 0.6)
simu42rc <-simulateGMAR(4, 2, params42rc, restricted=TRUE, constraints=TRUE, R=R, nsimu=100)
# Mixture version of Heterogenuous Autoregressive (HAR) process
paramsHAR2 <- c(1, 0.3, 0.2, 0.1, 1, 1.5, 0.3, 0.25, -0.1, 0.6, 0.55)
r1 = c(1, rep(0, 21)); r2 = c(rep(0.2, 5), rep(0, 17)); r3 = rep(1/22, 22)
R0 = cbind(r1, r2, r3)
simuHAR2 <- simulateGMAR(22, 2, paramsHAR2, constraints=TRUE, R=list(R0, R0), nsimu=100)
# }
Run the code above in your browser using DataLab