change_parametrization
changes the parametrization of the given parameter
vector to change_to
.
change_parametrization(
p,
M,
params,
model = c("GMAR", "StMAR", "G-StMAR"),
restricted = FALSE,
constraints = NULL,
change_to = c("intercept", "mean")
)
a positive integer specifying the autoregressive order of the model.
a positive integer specifying the number of mixture components.
a size (2x1) integer vector specifying the number of GMAR type components M1
in the
first element and StMAR type components M2
in the second element. The total number of mixture components is M=M1+M2
.
a real valued parameter vector specifying the model.
Size
Size
Size
Replace the vectors
Size
Size
Size
Replace the vector
Symbol parametrization=="mean"
, just replace each intercept term M1
components are GMAR type
and the rest M2
components are StMAR type.
Note that in the case M=1, the parameter
is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1
components
are GMAR type and the rest M2
components are StMAR type.
a logical argument stating whether the AR coefficients
specifies linear constraints applied to the autoregressive parameters.
a list of size
a size
Symbol p
for all regimes.
Ignore or set to NULL
if applying linear constraints is not desired.
either "intercept" or "mean" specifying to which parametrization it should be switched to.
If set to "intercept"
, it's assumed that params
is mean-parametrized, and if set to "mean"
it's assumed that params
is intercept-parametrized.
Returns parameter vector described in params
but with parametrization changed from intercept to mean
(when change_to==mean
) or from mean to intercept (when change_to==intercept
).
No argument checks!
Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's t-distribution. arXiv:2003.05221 [econ.EM].