loglikelihood
computes the log-likelihood of the specified GMAR, StMAR, or G-StMAR model.
Exists for convenience if one wants to for example plot profile log-likelihoods or employ other estimation algorithms.
Use minval
to control what happens when the parameter vector is outside the parameter space.
loglikelihood(
data,
p,
M,
params,
model = c("GMAR", "StMAR", "G-StMAR"),
restricted = FALSE,
constraints = NULL,
conditional = TRUE,
parametrization = c("intercept", "mean"),
returnTerms = FALSE,
minval = NA
)
a numeric vector or class 'ts'
object containing the data. NA
values are not supported.
a positive integer specifying the autoregressive order of the model.
a positive integer specifying the number of mixture components.
a size (2x1) integer vector specifying the number of GMAR type components M1
in the
first element and StMAR type components M2
in the second element. The total number of mixture components is M=M1+M2
.
a real valued parameter vector specifying the model.
Size
Size
Size
Replace the vectors
Size
Size
Size
Replace the vector
Symbol parametrization=="mean"
, just replace each intercept term M1
components are GMAR type
and the rest M2
components are StMAR type.
Note that in the case M=1, the parameter
is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1
components
are GMAR type and the rest M2
components are StMAR type.
a logical argument stating whether the AR coefficients
specifies linear constraints applied to the autoregressive parameters.
a list of size
a size
Symbol p
for all regimes.
Ignore or set to NULL
if applying linear constraints is not desired.
a logical argument specifying whether the conditional or exact log-likelihood function should be used.
is the model parametrized with the "intercepts"
should the terms
this will be returned when the parameter vector is outside the parameter space and boundaries==TRUE
.
Returns the log-likelihood value or the terms described in returnTerms
.
Galbraith, R., Galbraith, J. 1974. On the inverses of some patterned matrices arising in the theory of stationary time series. Journal of Applied Probability 11, 63-71.
Kalliovirta L. (2012) Misspecification tests based on quantile residuals. The Econometrics Journal, 15, 358-393.
Kalliovirta L., Meitz M. and Saikkonen P. 2015. Gaussian Mixture Autoregressive model for univariate time series. Journal of Time Series Analysis, 36, 247-266.
Meitz M., Preve D., Saikkonen P. 2018. A mixture autoregressive model based on Student's t-distribution. arXiv:1805.04010 [econ.EM].
Virolainen S. 2020. A mixture autoregressive model based on Gaussian and Student's t-distribution. arXiv:2003.05221 [econ.EM].
fitGSMAR
, GSMAR
, quantileResiduals
,
mixingWeights
, calc_gradient
# NOT RUN {
# GMAR model
params12 <- c(0.18, 0.93, 0.01, 0.86, 0.68, 0.02, 0.88)
loglikelihood(logVIX, 1, 2, params12)
# Restricted GMAR model, outside parameter space
params12r <- c(0.21, 0.23, 0.92, 0.01, 0.02, 0.86)
loglikelihood(logVIX, 1, 2, params12r, restricted=TRUE)
# Non-mixture version of StMAR model, outside parameter space
params11t <- c(0.16, 0.93, 0.00, 3.01)
loglikelihood(logVIX, 1, 1, params11t, model="StMAR", minval="Hello")
# G-StMAR model
params12gs <- c(0.86, 0.68, 0.02, 0.18, 0.93, 0.01, 0.11, 44.36)
loglikelihood(logVIX, 1, c(1, 1), params12gs, model="G-StMAR")
# Restricted G-StMAR model
params12gsr <- c(0.31, 0.33, 0.88, 0.01, 0.02, 0.77, 2.72)
loglikelihood(logVIX, 1, c(1, 1), params12gsr, model="G-StMAR",
restricted=TRUE)
# GMAR model as a mixture of AR(2) and AR(1) models
constraints <- list(diag(1, ncol=2, nrow=2), as.matrix(c(1, 0)))
params22c <- c(0.61, 0.83, -0.06, 0.02, 0.21, 0.91, 0.01, 0.16)
loglikelihood(logVIX, 2, 2, params22c, constraints=constraints)
# Such StMAR(3,2) that the AR coefficients are restricted to be
# the same for both regimes and that the second AR coefficients are
# constrained to zero.
params32trc <- c(0.35, 0.33, 0.88, -0.02, 0.01, 0.01, 0.36, 4.53, 1000)
loglikelihood(logVIX, 3, 2, params32trc, model="StMAR", restricted=TRUE,
constraints=matrix(c(1, 0, 0, 0, 0, 1), ncol=2))
# }
Run the code above in your browser using DataLab