warn_dfs
warns if the model contains large degrees of freedom parameter values.
warn_dfs(
object,
p,
M,
params,
model = c("GMAR", "StMAR", "G-StMAR"),
restricted = FALSE,
constraints = NULL,
warn_about = c("derivs", "errors")
)
an object to be tested
a positive integer specifying the autoregressive order of the model.
a positive integer specifying the number of mixture components.
a size (2x1) integer vector specifying the number of GMAR type components M1
in the
first element and StMAR type components M2
in the second element. The total number of mixture components is M=M1+M2
.
a real valued parameter vector specifying the model.
Size
Size
Size
Replace the vectors
Size
Size
Size
Replace the vector
Symbol parametrization=="mean"
, just replace each intercept term M1
components are GMAR type
and the rest M2
components are StMAR type.
Note that in the case M=1, the parameter
is "GMAR", "StMAR", or "G-StMAR" model considered? In the G-StMAR model, the first M1
components
are GMAR type and the rest M2
components are StMAR type.
a logical argument stating whether the AR coefficients
specifies linear constraints applied to the autoregressive parameters.
a list of size
a size
Symbol p
for all regimes.
Ignore or set to NULL
if applying linear constraints is not desired.
warn about inaccurate derivatives or standard errors?
Doesn't return anything but throws a warning if any degrees of freedom parameters have value larger than 100.
Either provide a class 'gsmar' object or specify the model by hand.