#####
x <- rbind(matrix(rnorm(100, mean = 0, sd = 0.3), ncol = 2),
matrix(rnorm(100, mean = 2, sd = 0.3), ncol = 2),
matrix(rnorm(100, mean = 4, sd = 0.3), ncol = 2))
similarity<-ZPGaussianSimilarity(x,7)
similarity=similarity%*%t(similarity)
sp<-KpartitionNJW(similarity,3)
plot(x,col=sp$label)
#####
x <- rbind(data.frame(x=1:100+(runif(100)-0.5)*2,y=runif(100)/5),
data.frame(x=1:100+(runif(100)-0.5)*2,y=runif(100)/5+1),
data.frame(x=1:100+(runif(100)-0.5)*2,y=runif(100)/5+2))
similarity<-ZPGaussianSimilarity(x,7)
similarity=similarity%*%t(similarity)
sp<-KpartitionNJW(similarity,3)
plot(x,col=sp$label)
#####
x=(runif(1000)*4)-2;y=(runif(1000)*4)-2
keep<-which((x**2+y**2<0.5)|(x**2+y**2>1.5**2 & x**2+y**2<2**2 ))
data<-data.frame(x,y)[keep,]
similarity=ZPGaussianSimilarity(data, 7)
similarity=similarity%*%t(similarity)
sp<-KpartitionNJW(similarity,2)
plot(data,col=sp$label)
Run the code above in your browser using DataLab