Learn R Programming

umx (version 1.4.0)

umxACESexLim: umxACESexLim

Description

Cholesky style sex-limitation model.

Usage

umxACESexLim(name = "ACE_sexlim", selDVs, mzmData, dzmData, mzfData, dzfData, dzoData, suffix = NULL, autoRun = getOption("umx_auto_run"))

Arguments

name
The name of the model (defaults to "ACE_sexlim")
selDVs
The variables to include. If you provide a suffix, you can use just the base names.
mzmData
The MZ male dataframe
dzmData
The DZ male dataframe
mzfData
The DZ female dataframe
dzfData
The DZ female dataframe
dzoData
The DZ opposite-sex dataframe. (be sure and get in right order)
suffix
The suffix for twin 1 and twin 2, often "_T". If set, you can omit suffixes in SelDVs, i.e., just "dep" not c("dep_T1", "dep_T2")
autoRun
Whether to mxRun the model (default TRUE: the estimated model will be returned)

Value

- ACE sexlim model

Details

This is a multi-variate capable Quantitative & Qualitative Sex-Limitation script using ACE Cholesky modeling. It implements a correlation approach to ensure that order of variables does NOT affect ability of model to account for DZOS data. Restrictions include the assumtion that twin means and variances can be equated across birth order within zygosity groups.

Note: Qualitative sex differences are differences in the latent A, C, or E latent variables Note: Quantitative sex differences are differences in the path loadings from A, C, or E to the measured variables

References

- Neale et al., (2006). Multivariate genetic analysis of sex-lim and GxE interaction, Twin Research & Human Genetics., https://github.com/tbates/umx, https://tbates.github.io

See Also

Other Twin Modeling Functions: plot.MxModel, umxACEcov, umxACE, umxCF_SexLim, umxCP, umxGxE_window, umxGxE, umxIP, umxPlotACEcov, umxPlotCP, umxPlotGxE, umxPlotIP, umxSummaryACEcov, umxSummaryACE, umxSummaryCP, umxSummaryGxE, umxSummaryIP, umx_make_TwinData, umx

Examples

Run this code
## Not run: 
# # Load Libraries
# require(umx);
# # =========================
# # = Load and Process Data =
# # =========================
# data('us_skinfold_data')
# # rescale vars
# us_skinfold_data[,c('bic_T1', 'bic_T2')] <- us_skinfold_data[,c('bic_T1', 'bic_T2')]/3.4
# us_skinfold_data[,c('tri_T1', 'tri_T2')] <- us_skinfold_data[,c('tri_T1', 'tri_T2')]/3
# us_skinfold_data[,c('caf_T1', 'caf_T2')] <- us_skinfold_data[,c('caf_T1', 'caf_T2')]/3
# us_skinfold_data[,c('ssc_T1', 'ssc_T2')] <- us_skinfold_data[,c('ssc_T1', 'ssc_T2')]/5
# us_skinfold_data[,c('sil_T1', 'sil_T2')] <- us_skinfold_data[,c('sil_T1', 'sil_T2')]/5
# 
# # Select Variables for Analysis
# varList = c('ssc','sil','caf','tri','bic')
# selVars = umx_paste_names(varList, "_T", 1:2)
# 
# # Data objects for Multiple Groups
# mzmData = subset(us_skinfold_data, zyg == 1, selVars)
# dzmData = subset(us_skinfold_data, zyg == 3, selVars)
# mzfData = subset(us_skinfold_data, zyg == 2, selVars)
# dzfData = subset(us_skinfold_data, zyg == 4, selVars)
# dzoData = subset(us_skinfold_data, zyg == 5, selVars)
# 
# m1 = umxACESexLim(selDVs = varList, suffix = "_T",
#        mzmData = mzmData, dzmData = dzmData, 
#        mzfData = mzfData, dzfData = dzfData, 
#        dzoData = dzoData)
# m1 = mxRun(m1)
# # ===================================================
# # = Test switching specific a from Males to females =
# # ===================================================
# m2 = umxSetParameters(m1, labels = "asm_.*", free = FALSE, values = 0, regex = TRUE)
# m2 = umxSetParameters(m1, labels = "asf_.*", free = TRUE , values = 0, regex = TRUE)
# m2 = mxRun(m2)
# summary(m2)
# umxCompare(m2, m1)
# # does fit move on repeated execution?
# # for (i in 1:4) { m2 <- mxRun(m2); print(m2 $output$mi) }
# ## End(Not run)

Run the code above in your browser using DataLab