Learn R Programming

umx (version 1.4.0)

umxCI_boot: umxCI_boot

Description

Compute boot-strapped Confidence Intervals for parameters in an mxModel The function creates a sampling distribution for parameters by repeatedly drawing samples with replacement from your data and then computing the statistic for each redrawn sample.

Usage

umxCI_boot(model, rawData = NULL, type = c("par.expected", "par.observed", "empirical"), std = TRUE, rep = 1000, conf = 95, dat = FALSE, digits = 3)

Arguments

model
is an optimized mxModel
rawData
is the raw data matrix used to estimate model
type
is the kind of bootstrap you want to run. "par.expected" and "par.observed" use parametric Monte Carlo bootstrapping based on your expected and observed covariance matrices, respectively. "empirical" uses empirical bootstrapping based on rawData.
std
specifies whether you want CIs for unstandardized or standardized parameters (default: std = TRUE)
rep
is the number of bootstrap samples to compute (default = 1000).
conf
is the confidence value (default = 95)
dat
specifies whether you want to store the bootstrapped data in the output (useful for multiple analyses, such as mediation analysis)
digits
rounding precision

Value

- expected covariance matrix

References

- http://openmx.psyc.virginia.edu/thread/2598 Original written by http://openmx.psyc.virginia.edu/users/bwiernik

See Also

- umxExpMeans, umxExpCov

Other Reporting functions: RMSEA.MxModel, RMSEA.summary.mxmodel, RMSEA, confint.MxModel, extractAIC.MxModel, loadings, logLik.MxModel, plot.MxModel, residuals.MxModel, umxCI, umxCompare, umxExpCov, umxExpMeans, umxFitIndices, umxPlotACEcov, umxPlotACE, umxPlotCP, umxPlotGxE, umxPlotIP, umxSummary.MxModel, umxSummaryACE, umx_drop_ok, umx_standardize_RAM

Examples

Run this code
## Not run: 
# 	require(umx)
# 	data(demoOneFactor)
# 	latents  = c("G")
# 	manifests = names(demoOneFactor)
# 	m1 <- mxModel("One Factor", type = "RAM", 
# 		manifestVars = manifests, latentVars = latents, 
# 		mxPath(from = latents, to = manifests),
# 		mxPath(from = manifests, arrows = 2),
# 		mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
# 		mxData(cov(demoOneFactor), type = "cov", numObs = 500)
# 	)
# 	m1 = umxRun(m1, setLabels = TRUE, setValues = TRUE)
# 	umxCI_boot(m1, type = "par.expected")
# ## End(Not run)

Run the code above in your browser using DataLab