Learn R Programming

umx (version 1.4.0)

umxExpCov: Get the expected vcov matrix

Description

Extract the expected covariance matrix from an mxModel

Usage

umxExpCov(object, latents = FALSE, manifests = TRUE, digits = NULL, ...)

Arguments

object
an mxModel to get the covariance matrix from
latents
Whether to select the latent variables (defaults to TRUE)
manifests
Whether to select the manifest variables (defaults to TRUE)
digits
precision of reporting. Deafult (NULL) is not not round at all.
...
extra parameters (to match vcov)

Value

- expected covariance matrix

References

- http://openmx.psyc.virginia.edu/thread/2598 Original written by http://openmx.psyc.virginia.edu/users/bwiernik

See Also

- umxRun, umxCI_boot

Other Reporting functions: RMSEA.MxModel, RMSEA.summary.mxmodel, RMSEA, confint.MxModel, extractAIC.MxModel, loadings, logLik.MxModel, plot.MxModel, residuals.MxModel, umxCI_boot, umxCI, umxCompare, umxExpMeans, umxFitIndices, umxPlotACEcov, umxPlotACE, umxPlotCP, umxPlotGxE, umxPlotIP, umxSummary.MxModel, umxSummaryACE, umx_drop_ok, umx_standardize_RAM

Examples

Run this code
require(umx)
data(demoOneFactor)
latents  = c("G")
manifests = names(demoOneFactor)
m1 <- mxModel("One Factor", type = "RAM", 
	manifestVars = manifests, latentVars = latents, 
	mxPath(from = latents, to = manifests),
	mxPath(from = manifests, arrows = 2),
	mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
	mxData(cov(demoOneFactor), type = "cov", numObs = 500)
)
m1 = umxRun(m1, setLabels = TRUE, setValues = TRUE)
vcov(m1)
umxExpCov(m1, digits = 3)

Run the code above in your browser using DataLab