Learn R Programming

umx (version 1.4.0)

umxMI: umxMI

Description

Report modifications which would improve fit. Notes: 1. Runs much fast with full = FALSE (but this doesn't allow the model to re-fit around the newly- freed parameter). 2. Compared to mxMI, this function returns top changes, and also suppresses the run message. 3. Finally, of course: see the requirements for (legitimate) post-hoc modeling in mxMI You are almost certainly doing better science when testing competing models rather than modifying a model to fit.

Usage

umxMI(model = NA, matrices = NA, full = TRUE, numInd = NA, typeToShow = "both", decreasing = TRUE)

Arguments

model
An mxModel for which to report modification indices
matrices
which matrices to test. The default (NA) will test A & S for RAM models
full
Change in fit allowing all parameters to move. If FALSE only the parameter under test can move.
numInd
How many modifications to report. Use -1 for all. Default (NA) will report all over 6.63 (p = .01)
typeToShow
Whether to shown additions or deletions (default = "both")
decreasing
How to sort (default = TRUE, decreasing)

References

- http://www.github.com/tbates/umx

See Also

- mxMI

Other Modify or Compare Models: umxAdd1, umxDrop1, umxEquate, umxFixAll, umxGetParameters, umxSetParameters, umxUnexplainedCausalNexus, umx

Examples

Run this code
require(umx)
data(demoOneFactor)
latents  = c("G")
manifests = names(demoOneFactor)[1:3]
df = mxData(cov(demoOneFactor[,manifests]), type = "cov", numObs = 500)
m1 <- umxRAM("One Factor", data = df,
	umxPath(latents, to = manifests),
	umxPath(var = manifests),
	umxPath(var = latents, fixedAt = 1)
)
umxMI(m1, full=FALSE)

Run the code above in your browser using DataLab