Learn R Programming

umx (version 1.4.0)

umx_standardize_RAM: umx_standardize_RAM

Description

umx_standardize_RAM takes a RAM-style model, and returns standardized version.

Usage

umx_standardize_RAM(model, return = "parameters", Amatrix = NA, Smatrix = NA, Mmatrix = NA)

Arguments

model
The mxModel you wish to standardise
return
What to return. Valid options: "parameters", "matrices", or "model"
Amatrix
Optionally tell the function what the name of the asymmetric matrix is (defaults to RAM standard A)
Smatrix
Optionally tell the function what the name of the symmetric matrix is (defaults to RAM standard S)
Mmatrix
Optionally tell the function what the name of the means matrix is (defaults to RAM standard M)

Value

- a mxModel or else parameters or matrices if you request those

References

- http://github.com/tbates/umx

See Also

Other Reporting functions: RMSEA.MxModel, RMSEA.summary.mxmodel, RMSEA, confint.MxModel, extractAIC.MxModel, loadings, logLik.MxModel, plot.MxModel, residuals.MxModel, umxCI_boot, umxCI, umxCompare, umxExpCov, umxExpMeans, umxFitIndices, umxPlotACEcov, umxPlotACE, umxPlotCP, umxPlotGxE, umxPlotIP, umxSummary.MxModel, umxSummaryACE, umx_drop_ok

Examples

Run this code
require(umx)
data(demoOneFactor)
latents  = c("G")
manifests = names(demoOneFactor)
m1 <- mxModel("One Factor", type = "RAM", 
	manifestVars = manifests, latentVars = latents, 
	mxPath(from = latents, to = manifests),
	mxPath(from = manifests, arrows = 2),
	mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
	mxData(cov(demoOneFactor), type = "cov", numObs = 500)
)
m1 = umxRun(m1, setLabels = TRUE, setValues = TRUE)
m1 = umx_standardize_RAM(m1, return = "model")
summary(m1)

Run the code above in your browser using DataLab