Summarizes a Common-Pathway model, as returned by umxCP
umxSummaryCP(model, digits = 2, file = getOption("umx_auto_plot"),
returnStd = FALSE, extended = FALSE, showRg = FALSE,
comparison = NULL, std = TRUE, CIs = FALSE, ...)
A fitted umxCP
model to summarize
round to how many digits (default = 2)
The name of the dot file to write: NA = none; "name" = use the name of the model
Whether to return the standardized form of the model (default = FALSE)
how much to report (FALSE)
Whether to show the genetic correlations (FALSE)
Whether to run mxCompare on a comparison model (NULL)
Whether to show the standardized model (TRUE) (ignored: used extended = TRUE to get unstandardized)
Confidence intervals (F)
Optional additional parameters
- optional mxModel
- umxCP()
, plot()
, umxSummary()
work for IP, CP, GxE, SAT, and ACE models.
Other Twin Modeling Functions: plot.MxModel
,
umxACESexLim
,
umxACE_cov_fixed
, umxACEcov
,
umxACEv
, umxACE
,
umxCF_SexLim
, umxCP
,
umxGxE_window
, umxGxE
,
umxIP
, umxPlotACEcov
,
umxPlotCP
, umxPlotGxE
,
umxPlotIP
, umxReduceACE
,
umxSummaryACEcov
,
umxSummaryACEv
,
umxSummaryACE
, umxSummaryGxE
,
umxSummaryIP
, umx_long2wide
,
umx_wide2long
, umx
,
xmu_twin_check
# NOT RUN {
require(umx)
data(twinData)
twinData$wt1 = twinData$wt1/10 # help CSOLNP by putting wt on a similar scale to ht
twinData$wt2 = twinData$wt2/10 # help CSOLNP by putting wt on a similar scale to ht
selDVs = c("ht", "wt")
mzData <- subset(twinData, zygosity == "MZFF", umx_paste_names(selDVs, "", 1:2))
dzData <- subset(twinData, zygosity == "DZFF", umx_paste_names(selDVs, "", 1:2))
m1 = umxCP(selDVs = selDVs, dzData = dzData, mzData = mzData, suffix = "")
umxSummaryCP(m1, file = NA) # suppress plot creation with file
umxSummary(m1, file = NA) # generic summary is the same
stdFit = umxSummaryCP(m1, digits = 2, file = NA, returnStd = TRUE,
extended = FALSE, showRg = TRUE, std = TRUE, CIs = TRUE);
umxSummaryCP(m1, ext = TRUE, file = "name")
umxSummaryCP(m1, file = "Figure 3", std = TRUE)
# }
Run the code above in your browser using DataLab