Barely useful, but justified perhaps by centralizing trimming the "_T1" off, and returning just twin 1.
xmu_twin_get_var_names(
model,
source = c("expCovMZ", "observed"),
trim = TRUE,
twinOneOnly = TRUE
)
variable names from twin model
A model to get the variables from
Whether to access the dimnames of the "expCovMZ" or the names of the "observed" data (will include covariates)
Whether to trim the suffix (TRUE)
Whether to return on the names for twin 1 (i.e., unique names)
Other xmu internal not for end user:
umxModel()
,
umxRenameMatrix()
,
umx_APA_pval()
,
umx_fun_mean_sd()
,
umx_get_bracket_addresses()
,
umx_make()
,
umx_standardize()
,
umx_string_to_algebra()
,
xmuHasSquareBrackets()
,
xmuLabel_MATRIX_Model()
,
xmuLabel_Matrix()
,
xmuLabel_RAM_Model()
,
xmuMI()
,
xmuMakeDeviationThresholdsMatrices()
,
xmuMakeOneHeadedPathsFromPathList()
,
xmuMakeTwoHeadedPathsFromPathList()
,
xmuMaxLevels()
,
xmuMinLevels()
,
xmuPropagateLabels()
,
xmuRAM2Ordinal()
,
xmuTwinSuper_Continuous()
,
xmuTwinSuper_NoBinary()
,
xmuTwinUpgradeMeansToCovariateModel()
,
xmu_CI_merge()
,
xmu_CI_stash()
,
xmu_DF_to_mxData_TypeCov()
,
xmu_PadAndPruneForDefVars()
,
xmu_bracket_address2rclabel()
,
xmu_cell_is_on()
,
xmu_check_levels_identical()
,
xmu_check_needs_means()
,
xmu_check_variance()
,
xmu_clean_label()
,
xmu_data_missing()
,
xmu_data_swap_a_block()
,
xmu_describe_data_WLS()
,
xmu_dot_make_paths()
,
xmu_dot_make_residuals()
,
xmu_dot_maker()
,
xmu_dot_move_ranks()
,
xmu_dot_rank_str()
,
xmu_extract_column()
,
xmu_get_CI()
,
xmu_lavaan_process_group()
,
xmu_make_TwinSuperModel()
,
xmu_make_bin_cont_pair_data()
,
xmu_make_mxData()
,
xmu_match.arg()
,
xmu_name_from_lavaan_str()
,
xmu_path2twin()
,
xmu_path_regex()
,
xmu_print_algebras()
,
xmu_rclabel_2_bracket_address()
,
xmu_safe_run_summary()
,
xmu_set_sep_from_suffix()
,
xmu_show_fit_or_comparison()
,
xmu_simplex_corner()
,
xmu_standardize_ACEcov()
,
xmu_standardize_ACEv()
,
xmu_standardize_ACE()
,
xmu_standardize_CP()
,
xmu_standardize_IP()
,
xmu_standardize_RAM()
,
xmu_standardize_SexLim()
,
xmu_standardize_Simplex()
,
xmu_start_value_list()
,
xmu_starts()
,
xmu_summary_RAM_group_parameters()
,
xmu_twin_add_WeightMatrices()
,
xmu_twin_check()
,
xmu_twin_make_def_means_mats_and_alg()
,
xmu_twin_upgrade_selDvs2SelVars()
if (FALSE) {
data(twinData) # ?twinData from Australian twins.
twinData[, c("ht1", "ht2")] = twinData[, c("ht1", "ht2")] * 10
mzData = twinData[twinData$zygosity %in% "MZFF", ]
dzData = twinData[twinData$zygosity %in% "DZFF", ]
m1 = umxACE(selDVs= "ht", sep= "", dzData= dzData, mzData= mzData, autoRun= FALSE)
selVars = xmu_twin_get_var_names(m1, source = "expCovMZ", trim = TRUE, twinOneOnly = TRUE) # "ht"
umx_check(selVars == "ht")
xmu_twin_get_var_names(m1, source= "expCovMZ", trim= FALSE, twinOneOnly= FALSE) # "ht1" "ht2"
selVars = xmu_twin_get_var_names(m1, source= "observed", trim= TRUE, twinOneOnly= TRUE)# "ht"
nVar = length(selVars)
umx_check(nVar == 1)
}
Run the code above in your browser using DataLab