This function can perform model reduction for umxGxE() models,
testing dropping a,c & e, as well as c & c, a & a` etc.
It reports the results in a table. Set the format of the table with
umx_set_table_format(). Or set report = "html" to open a
table for pasting into a word processor.
In addition to printing a table, the function returns the preferred model.
umxReduceGxE(
model,
report = c("markdown", "inline", "html", "report"),
intervals = TRUE,
testD = TRUE,
baseFileName = "tmp_gxe",
tryHard = c("yes", "no", "ordinal", "search"),
silent = FALSE,
...
)best model
A umxGxE() to reduce.
How to report the results. default = "markdown". "html" = open in browser.
Recompute CIs (if any included) on the best model (default = TRUE)
Whether to test ADE and DE models (TRUE)
(optional) custom filename for html output (default = "tmp").
Default ('no') uses normal mxRun. "yes" uses mxTryHard. Other options: "ordinal", "search"
Default (FALSE)
Other parameters to control model summary.
Wagenmakers, E.J., & Farrell, S. (2004). AIC model selection using Akaike weights. Psychonomic Bulletin and Review, 11, 192-196. tools:::Rd_expr_doi("10.3758/BF03206482").
umxReduce(), umxReduceACE()
Other Twin Modeling Functions:
power.ACE.test(),
umx,
umxACE(),
umxACEcov(),
umxACEv(),
umxCP(),
umxDiffMZ(),
umxDiscTwin(),
umxDoC(),
umxDoCp(),
umxGxE(),
umxGxE_window(),
umxGxEbiv(),
umxIP(),
umxMRDoC(),
umxReduce(),
umxReduceACE(),
umxRotate.MxModelCP(),
umxSexLim(),
umxSimplex(),
umxSummarizeTwinData(),
umxSummaryACE(),
umxSummaryACEv(),
umxSummaryDoC(),
umxSummaryGxEbiv(),
umxSummarySexLim(),
umxSummarySimplex(),
umxTwinMaker()
if (FALSE) {
model = umxReduce(model)
}
Run the code above in your browser using DataLab