unifiedml
A Unified Machine Learning Interface for R
Overview
unifiedml provides a consistent, sklearn-like interface for various (any) machine learning models in R.
It eliminates the need to remember different function signatures across packages by automatically detecting the appropriate interface (formula vs matrix) and task type (regression vs classification).
Key Features
For now:
- Automatic Task Detection: Automatically detects regression vs classification based on response variable type (numeric → regression, factor → classification)
- Universal Interface: Works seamlessly with
glmnet,randomForest,e1071::svm, and other popular ML packages with formula or matrix interface - Built-in Cross-Validation: Consistent
cross_val_score()function with automatic metric selection - Model Interpretability: Numerical derivatives and statistical significance testing via
summary() - Partial Dependence Plots: Visualize feature effects with
plot() - Method Chaining: Clean, pipeable syntax with R6 classes
Installation
From CRAN:
install.packages("unifiedml")From Github (development version):
# Install from GitHub (development version, for now) devtools::install_github("Techtonique/unifiedml")
Quick Start
Regression Example
library(unifiedml)
library(glmnet)
# Prepare data
data(mtcars)
X <- as.matrix(mtcars[, -1])
y <- mtcars$mpg # numeric → automatic regression
# Fit model
mod <- Model$new(glmnet::glmnet)
mod$fit(X, y, alpha = 0, lambda = 0.1)
# Make predictions
predictions <- mod$predict(X)
# Get model summary with feature importance
mod$summary()
# Visualize partial dependence
mod$plot(feature = 1)
# Cross-validation (automatically uses RMSE for regression)
cv_scores <- cross_val_score(mod, X, y, cv = 5)
cat("Mean RMSE:", mean(cv_scores), "\n")Classification Example
library(randomForest)
# Prepare data
data(iris)
X <- as.matrix(iris[, 1:4])
y <- iris$Species # factor → automatic classification
# Fit model
mod <- Model$new(randomForest::randomForest)
mod$fit(X, y, ntree = 100)
# Make predictions
predictions <- mod$predict(X)
# Get model summary
mod$summary()
# Cross-validation (automatically uses accuracy for classification)
cv_scores <- cross_val_score(mod, X, y, cv = 5)
cat("Mean Accuracy:", mean(cv_scores), "\n")Core Functionality
The Model Class
The Model R6 class provides a unified interface for any machine learning function:
# Create a model wrapper
mod <- Model$new(model_function)
# Fit the model (task type auto-detected from y)
mod$fit(X, y, ...)
# Make predictions
predictions <- mod$predict(X_new)
# Get interpretable summary
mod$summary(h = 0.01, alpha = 0.05)
# Visualize feature effects
mod$plot(feature = 1)
# Print model info
mod$print()Cross-Validation
The cross_val_score() function provides consistent k-fold cross-validation:
# Automatic metric selection based on task
scores <- cross_val_score(mod, X, y, cv = 5)
# Specify custom metric
scores <- cross_val_score(mod, X, y, cv = 10, scoring = "mae")
# Available metrics:
# - Regression: "rmse" (default), "mae"
# - Classification: "accuracy" (default), "f1"Model Interpretability
The summary() method uses numerical derivatives to assess feature importance:
mod$summary()
# Output:
# Model Summary - Numerical Derivatives
# ======================================
# Task: regression
# Samples: 150 | Features: 4
#
# Feature Mean_Derivative Std_Error t_value p_value Significance
# Sepal.Length 0.523 0.042 12.45 < 0.001 ***
# Sepal.Width -0.234 0.038 -6.16 < 0.001 ***
# ...Supported Models
unifiedml automatically detects the appropriate interface for:
- glmnet: Ridge, Lasso, Elastic Net regression and classification
- randomForest: Random forest for regression and classification
- e1071::svm: Support Vector Machines
- Any model with either formula (
y ~ .) or matrix (x, y) interface
Automatic Task Detection
The package automatically determines the task type:
# Regression (numeric y)
y_reg <- c(1.2, 3.4, 5.6, ...)
mod$fit(X, y_reg) # → task = "regression"
# Classification (factor y)
y_class <- factor(c("A", "B", "A", ...))
mod$fit(X, y_class) # → task = "classification"Advanced Features
Partial Dependence Plots
# Visualize how feature j affects predictions
mod$plot(feature = 3, n_points = 100)Model Cloning
# Create independent copy for parallel processing
mod_copy <- mod$clone_model()Examples
See the package vignette for comprehensive examples:
vignette("introduction", package = "unifiedml")Why unifiedml?
Traditional R modeling requires remembering different interfaces:
# Different interfaces = cognitive overhead
glmnet(x = X, y = y, ...) # matrix interface
randomForest(y ~ ., data = df, ...) # formula interface
svm(x = X, y = y, ...) # matrix interfaceWith unifiedml, it's always the same:
# One interface to rule them all
Model$new(glmnet)$fit(X, y, ...)
Model$new(randomForest)$fit(X, y, ...)
Model$new(svm)$fit(X, y, ...)Contributing
Contributions are welcome, feel free to submit a Pull Request.
License
The Clear BSD License - see LICENSE file for details.
Citation
If you use this package in your research, please cite:
@Manual{unifiedml,
title = {unifiedml: Unified Machine Learning Interface for R},
author = {T. Moudiki},
year = {2025},
note = {R package version x.x.x}
}Note to self
devtools::document()devtools::check(cran = TRUE)devtools::build()devtools::submit_cran()