Learn R Programming

unitquantreg (version 0.0.6)

uburrxii: The unit-Burr-XII distribution

Description

Density function, distribution function, quantile function and random number generation function for the unit-Burr-XII distribution reparametrized in terms of the \(\tau\)-th quantile, \(\tau \in (0, 1)\).

Usage

duburrxii(x, mu, theta, tau = 0.5, log = FALSE)

puburrxii(q, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)

quburrxii(p, mu, theta, tau = 0.5, lower.tail = TRUE, log.p = FALSE)

ruburrxii(n, mu, theta, tau = 0.5)

Value

duburrxii gives the density, puburrxii gives the distribution function, quburrxii gives the quantile function and ruburrxii generates random deviates.

Invalid arguments will return an error message.

Arguments

x, q

vector of positive quantiles.

mu

location parameter indicating the \(\tau\)-th quantile, \(\tau \in (0, 1)\).

theta

nonnegative shape parameter.

tau

the parameter to specify which quantile is to used.

log, log.p

logical; If TRUE, probabilities p are given as log(p).

lower.tail

logical; If TRUE, (default), \(P(X \leq{x})\) are returned, otherwise \(P(X > x)\).

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

Author

Josmar Mazucheli jmazucheli@gmail.com

André F. B. Menezes andrefelipemaringa@gmail.com

Details

Probability density function $$f(y\mid \alpha, \theta )=\frac{\alpha \theta }{y}\left[ -\log (y)\right]^{\theta -1}\left\{ 1+\left[ -\log (y)\right] ^{\theta }\right\} ^{-\alpha -1}$$

Cumulative distribution function $$F(y\mid \alpha, \theta )=\left\{ 1+\left[ -\log (y)\right] ^{\theta}\right\} ^{-\alpha }$$

Quantile function $$Q(\tau \mid \alpha, \theta )=\exp \left[ -\left( \tau ^{-\frac{1}{\alpha }}-1\right)^{\frac{1}{\theta }} \right]$$

Reparameterization $$\alpha=g^{-1}(\mu)=\frac{\log\left ( \tau^{-1} \right )}{\log\left [ 1+\log\left ( \frac{1}{\mu} \right )^\theta \right ]}$$

References

Korkmaz M. C. and Chesneau, C., (2021). On the unit Burr-XII distribution with the quantile regression modeling and applications. Computational and Applied Mathematics, 40(29), 1--26.

Examples

Run this code
set.seed(123)
x <- ruburrxii(n = 1000, mu = 0.5, theta = 1.5, tau = 0.5)
R <- range(x)
S <- seq(from = R[1], to = R[2], by =  0.01)
hist(x, prob = TRUE, main = 'unit-Burr-XII')
lines(S, duburrxii(x = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)
plot(ecdf(x))
lines(S, puburrxii(q = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)
plot(quantile(x, probs = S), type = "l")
lines(quburrxii(p = S, mu = 0.5, theta = 1.5, tau = 0.5), col = 2)

Run the code above in your browser using DataLab