Calculates the effective sampling rate (esr) for each term.
Usage
esr_terms(x, ...)
Arguments
x
An object.
...
Other arguments passed to methods.
Value
A list of uniquely named numeric atomic objects with values between
0 and 1 indicating the effectively sampling rate for each term.
Details
By default
$$\frac{1}{1 + 2 \sum_{k = 1}^\infty\rho_k(\theta)}$$
from Brooks et al. (2011) where the infinite sum is truncated at
lag \(k\) when \(\rho_{k+1}(\theta) < 0\).
References
Brooks, S., Gelman, A., Jones, G.L., and Meng, X.-L. (Editors). 2011.
Handbook for Markov Chain Monte Carlo. Taylor & Francis, Boca Raton.