# confIntV

0th

Percentile

##### crossTab, confIntV and cramersV

These functions compute the point estimate and confidence interval for Cramer's V. The crossTab function also shows a crosstable.

Keywords
bivar
##### Usage
crossTab(x, y=NULL, conf.level=.95,
digits=2, pValueDigits=3, ...)
cramersV(x, y = NULL, digits=2)
confIntV(x, y = NULL, conf.level=.95,
samples = 500, digits=2,
method=c('bootstrap', 'fisher'),
storeBootstrappingData = FALSE)
##### Arguments
x

Either a crosstable to analyse, or one of two vectors to use to generate that crosstable. The vector should be a factor, i.e. a categorical variable identified as such by the 'factor' class).

y

If x is a crosstable, y can (and should) be empty. If x is a vector, y must also be a vector.

digits

Minimum number of digits after the decimal point to show in the result.

pValueDigits

Minimum number of digits after the decimal point to show in the Chi Square p value in the result.

conf.level

Level of confidence for the confidence interval.

samples

Number of samples to generate when bootstrapping.

method

Whether to use Fisher's Z or bootstrapping to compute the confidence interval.

storeBootstrappingData

Whether to store (or discard) the data generating during the bootstrapping procedure.

...

Extra arguments to crossTab are passed on to confIntV.

##### Value

The cramersV and confIntV functions return either a point estimate or a confidence interval for Cramer's V, an effect size to describe the association between two categorical variables. The crossTab function is just a wrapper around confIntV.

• confIntV
• cramersV
• crossTab
##### Examples
# NOT RUN {
### Get confidence interval for Cramer's V
### Note that removing the 'table', and so providing raw data, would enable
### bootstrapping, which can take a while.
confIntV(table(infert$education, infert$induced));

# }

Documentation reproduced from package userfriendlyscience, version 0.6-1, License: GPL (>= 2)

### Community examples

Looks like there are no examples yet.