This method predicts values based upon a model trained by ebr
.
# S3 method for EBRmodel
predict(object, newdata, vote.schema = "maj",
probability = getOption("utiml.use.probs", TRUE), ...,
cores = getOption("utiml.cores", 1), seed = getOption("utiml.seed", NA))
Object of class 'EBRmodel
'.
An object containing the new input data. This must be a matrix, data.frame or a mldr object.
Define the way that ensemble must compute the predictions.
The default valid options are: c("avg", "maj", "max", "min"). If NULL
then all predictions are returned. (Default: 'maj'
)
Logical indicating whether class probabilities should be
returned. (Default: getOption("utiml.use.probs", TRUE)
)
Others arguments passed to the base algorithm prediction for all subproblems.
The number of cores to parallelize the training. Values higher
than 1 require the parallel package. (Default:
options("utiml.cores", 1)
)
An optional integer used to set the seed. This is useful when
the method is run in parallel. (Default: options("utiml.seed", NA)
)
An object of type mlresult, based on the parameter probability.
Ensemble of Binary Relevance (EBR)
Compute Multi-label Predictions
# NOT RUN {
# Predict SVM scores
model <- ebr(toyml)
pred <- predict(model, toyml)
# Predict SVM bipartitions running in 6 cores
pred <- predict(model, toyml, prob = FALSE, cores = 6)
# Return the classes with the highest score
pred <- predict(model, toyml, vote = 'max')
# }
Run the code above in your browser using DataLab