## Not run:
# data(ratingData)
# rc.selected<-1:5
# si.selected<-1:2
# p.0<-ratingData$p.0[rc.selected]
# sizes<-ratingData$sizes[si.selected,rc.selected]
#
# # ===============================================
# # compute alternative hypothesis H1A
# # ===============================================
# H1A<-power.target.Nclasses(p.0=p.0, size=sizes[1,],
# N=length(p.0),
# target=0.50)
#
# # compute minP's region and its power under H1A (the latter must be close to 0.5)
# r.mp<-region.acceptance(hypo.test="minP", p.0=p.0, size=sizes[1,], alpha=0.05)
# region.power(region=r.mp, p.1=H1A[1,])
#
# # compute enhanced test's region and its power under H1A
# # (result in table 4 of the ECB Working paper)
# r.mpp<-region.acceptance(hypo.test="minPp", p.0=p.0, size=sizes[1,], alpha=0.05)
# region.power(region=r.mpp, p.1=H1A[1,])
#
# # compute envelope test's region and its power under H1A
# # (result in table 4 of the ECB Working paper)
# r.sh<-region.acceptance(hypo.test="sterneHull", p.0=p.0, size=sizes[1,], alpha=0.05)
# region.power(region=r.sh, p.1=H1A[1,])
#
# # ===============================================
# # compute alternative hypothesis H1B
# # ===============================================
# H1B<-power.target.Nclasses(p.0=p.0, size=sizes[1,],
# N=1,
# target=0.30)
#
# # compute minP's region and its power under H1B (the latter must be close to 0.3)
# r.mp<-region.acceptance(hypo.test="minP", p.0=p.0, size=sizes[1,], alpha=0.05)
# power.vec<-vector(mode="numeric", length=nrow(H1B))
# for ( i in 1:nrow(H1B) ) {
# power.vec[i]<-region.power(region=r.mp, p.1=H1B[i,])
# }
# cat(paste("mean :", mean(power.vec), "\n"))
#
# # compute enhanced test's region and its power under H1B
# # (result in table 4 of the ECB Working paper)
# r.mpp<-region.acceptance(hypo.test="minPp", p.0=p.0, size=sizes[1,], alpha=0.05)
# power.vec<-vector(mode="numeric", length=nrow(H1B))
# for ( i in 1:nrow(H1B) ) {
# power.vec[i]<-region.power(region=r.mpp, p.1=H1B[i,])
# }
# cat(paste("mean :", mean(power.vec), "\n"))
#
# # compute envelope test's region and its power under H1B
# # (result in table 4 of the ECB Working paper)
# r.sh<-region.acceptance(hypo.test="sterneHull", p.0=p.0, size=sizes[1,], alpha=0.05)
# power.vec<-vector(mode="numeric", length=nrow(H1B))
# for ( i in 1:nrow(H1B) ) {
# power.vec[i]<-region.power(region=r.sh, p.1=H1B[i,])
# }
# cat(paste("mean :", mean(power.vec), "\n"))
#
#
# # ===============================================
# # compute alternative hypothesis H1C
# # ===============================================
# param<-par.dist.default(dist="tr.normal", p.0=p.0)
# set.seed(1)
# sample.h1<-sample.knowledge.H1(n=10000, par=param, p.0=p.0)
#
# sim.mp<-simul.scenario.rs(hypo.test="minP", p.0=p.0, sampleH1=sample.h1, sizes=sizes, alpha=0.05)
# sim.mp$power$weighted.average
#
# sim.mpp<-simul.scenario.rs(hypo.test="minPp", p.0=p.0, sampleH1=sample.h1, sizes=sizes, alpha=0.05)
# sim.mpp$power$weighted.average
# ## End(Not run)
Run the code above in your browser using DataLab