adjr2

0th

Percentile

adjr2

Calculates the Adjusted R2 (adjr2) from observed values, predicted values and the number of model parameters.

Usage
adjr2(o, p, k)
Arguments
o

A numeric vector. Observed values.

p

A numeric vector. Predicted values.

k

A number. The number of parameters in the model. Note that k includes the intercept, so for example, k is 2 for a linear regression model.

Details

Interpretation: larger is better. Adjusted R2 (adjr2) punishes complexity of models; a larger number of parameters (k) means a smaller adjr2 value.

Value

Adjusted R2 (adjr2)

References

Piikki K., Wetterlind J., Soderstrom M., Stenberg B. (2021). Perspectives on validation in digital soil mapping of continuous attributes. A review. Soil Use and Management. 10.1111/sum.12694

Aliases
  • adjr2
Examples
# NOT RUN {
obs<-c(1:10)
pred<-c(1, 1 ,3, 2, 4, 5, 6, 8, 7, 10)
adjr2(o=obs, p=pred, k=2)

# }
Documentation reproduced from package valmetrics, version 1.0.0, License: MIT + file LICENSE

Community examples

Looks like there are no examples yet.