Creates publication-ready visualization of precision profile results, showing CV vs concentration with the fitted model curve.
# S3 method for precision_profile
plot(
x,
show_ci = TRUE,
show_targets = TRUE,
show_points = TRUE,
point_alpha = 0.8,
point_size = 3,
line_colors = NULL,
title = NULL,
xlab = NULL,
ylab = NULL,
log_x = FALSE,
...
)# S3 method for precision_profile
autoplot(
object,
show_ci = TRUE,
show_targets = TRUE,
show_points = TRUE,
point_alpha = 0.8,
point_size = 3,
line_colors = NULL,
title = NULL,
xlab = NULL,
ylab = NULL,
log_x = FALSE,
...
)
A ggplot object that can be further customized.
An object of class precision_profile.
Logical; if TRUE (default), displays prediction interval
bands for the fitted curve.
Logical; if TRUE (default), displays horizontal lines
at functional sensitivity target CV values.
Logical; if TRUE (default), displays the observed
data points.
Numeric; transparency of points (0-1, default: 0.8).
Numeric; size of points (default: 3).
Named character vector with colors for "fitted",
"ci", and "target". Defaults to a clean color scheme.
Character; plot title. If NULL (default), generates an
automatic title.
Character; x-axis label. If NULL, uses "Concentration".
Character; y-axis label. If NULL, uses "CV (%)".
Logical; if TRUE, uses logarithmic scale for x-axis
(default: FALSE).
Additional arguments (currently ignored).
An object of class precision_profile.
The precision profile plot displays:
Observed points: CV values at each tested concentration
Fitted curve: Model-predicted CV across the concentration range
Prediction intervals: Confidence bands showing uncertainty
Target lines: Horizontal lines at functional sensitivity thresholds
The plot helps visualize:
How measurement precision changes with concentration
Model fit quality (points should follow the curve)
Functional sensitivity estimates (intersection of curve with target lines)
# See ?precision_profile for complete examples
Run the code above in your browser using DataLab