# \donttest{
##------------------------------------------------------------------
##
## V-cluster simulation
##
##------------------------------------------------------------------
vcsim <- function(m=500, p=9, std=.2) {
p <- max(p, 2)
n <- 2 * m
x <- runif(n, 0, 1)
y <- rep(NA, n)
y[1:m] <- x[1:m] + rnorm(m, sd = std)
y[(m+1):n] <- -x[(m+1):n] + rnorm(m, sd = std)
data.frame(x = x,
y = y,
z = matrix(runif(n * p, 0, 1), n))
}
dvc <- vcsim()
ovc <- clusterpro(dvc)
oldpar<-par(mfrow=c(3,3));plot(ovc,1:9);par(oldpar)
oldpar<-par(mfrow=c(3,3));plot(ovc,1:9,col.names="x");par(oldpar)
##------------------------------------------------------------------
##
## 4-cluster simulation
##
##------------------------------------------------------------------
if (library("MASS", logical.return=TRUE)) {
fourcsim <- function(n=500, sigma=2) {
cl1 <- mvrnorm(n,c(0,4),cbind(c(1,0),c(0,sigma)))
cl2 <- mvrnorm(n,c(4,0),cbind(c(1,0),c(0,sigma)))
cl3 <- mvrnorm(n,c(0,-4),cbind(c(1,0),c(0,sigma)))
cl4 <- mvrnorm(n,c(-4,0),cbind(c(1,0),c(0,sigma)))
dta <- data.frame(rbind(cl1,cl2,cl3,cl4))
colnames(dta) <- c("x","y")
data.frame(dta, noise=matrix(rnorm((n*4)*20),ncol=20))
}
d4c <- fourcsim()
o4c <- clusterpro(d4c)
oldpar<-par(mfrow=c(2,2));plot(o4c,1:4);par(oldpar)
}
##------------------------------------------------------------------
##
## latent variable simulation
##
##------------------------------------------------------------------
lvsim <- function(n=1000, q=2, qnoise=15, noise=FALSE) {
w <- rnorm(n)
x <- rnorm(n)
y <- rnorm(n)
z <- rnorm(n)
ei <- matrix(rnorm(n * q * 4, sd = sqrt(.1)), ncol = q * 4)
e1 <- rnorm(n, sd = sqrt(.4))
e2 <- rnorm(n, sd = sqrt(.4))
wi <- w + ei[, 1:q]
xi <- x + ei[, (q+1):(2*q)]
yi <- y + ei[, (2*q+1):(3*q)]
zi <- z + ei[, (3*q+1):(4*q)]
h1 <- w + x + e1
h2 <- y + z + e2
dta <- data.frame(w=w,wi=wi,x=x,xi=xi,y=y,yi=yi,z=z,zi=zi,h1=h1,h2=h2)
if (noise) {
dta <- data.frame(dta, noise = matrix(rnorm(n * qnoise), ncol = qnoise))
}
dta
}
dlc <- lvsim()
olc <- clusterpro(dlc)
oldpar<-par(mfrow=c(4,4));plot(olc,col.names="w");par(oldpar)
##------------------------------------------------------------------
##
## Glass mlbench data
##
##------------------------------------------------------------------
data(Glass, package = "mlbench")
dg <- Glass
## with class label
og <- clusterpro(dg)
oldpar<-par(mfrow=c(4,4));plot(og,1:16);par(oldpar)
## without class label
dgU <- Glass; dgU$Type <- NULL
ogU <- clusterpro(dgU)
oldpar<-par(mfrow=c(3,3));plot(ogU,1:9);par(oldpar)
# }
Run the code above in your browser using DataLab