## ------------------------------------------------------------
## toy example - needed to pass CRAN test
## ------------------------------------------------------------
## mtcars regression
o <- varpro(mpg ~ ., mtcars, ntree = 1)
imp <- importance(o, local.std = FALSE)
print(imp)
# \donttest{
## ------------------------------------------------------------
## iris example
## ------------------------------------------------------------
## apply varpro to the iris data
o <- varpro(Species ~ ., iris, max.tree = 5)
## print/plot the results
imp <- importance(o, plot.it = TRUE)
print(imp)
## ------------------------------------------------------------
## boston housing: regression
## ------------------------------------------------------------
data(BostonHousing, package = "mlbench")
## call varpro
o <- varpro(medv~., BostonHousing)
## extract importance values
imp <- importance(o)
print(imp)
## plot the results
imp <- importance(o, plot.it = TRUE)
print(imp)
## ------------------------------------------------------------
## illustrates y-external: regression example
## ------------------------------------------------------------
## friedman1 - standard application of varpro
d <- data.frame(mlbench::mlbench.friedman1(250),noise=matrix(runif(250*10,-1,1),250))
o <- varpro(y~.,d)
print(importance(o))
## importance using external rf predictor
print(importance(o,y.external=randomForestSRC::rfsrc(y~.,d)$predicted.oob))
## importance using external lm predictor
print(importance(o,y.external=lm(y~.,d)$fitted))
## importance using external randomized predictor
print(importance(o,y.external=sample(o$y)))
## ------------------------------------------------------------
## illustrates y-external: classification example
## ------------------------------------------------------------
## iris - standard application of varpro
o <- varpro(Species~.,iris)
print(importance(o))
## importance using external rf predictor
print(importance(o,y.external=randomForestSRC::rfsrc(Species~.,iris)$class.oob))
## importance using external randomized predictor
print(importance(o,y.external=sample(o$y)))
## ------------------------------------------------------------
## illustrates y-external: survival
## ------------------------------------------------------------
data(pbc, package = "randomForestSRC")
o <- varpro(Surv(days, status)~., pbc)
print(importance(o))
## importance using external rsf predictor
print(importance(o,y.external=randomForestSRC::rfsrc(Surv(days, status)~., pbc)$predicted.oob))
## importance using external randomized predictor
print(importance(o,y.external=sample(o$y)))
# }
Run the code above in your browser using DataLab