# \donttest{
##------------------------------------------------------------------
##
## Boston housing
##
##------------------------------------------------------------------
library(mlbench)
data(BostonHousing)
oldpar <- par(mfrow=c(2,3))
plot((oo.boston<-partialpro(varpro(medv~.,BostonHousing),nvar=6)))
par(oldpar)
##------------------------------------------------------------------
##
## Boston housing using newdata option
##
##
##------------------------------------------------------------------
library(mlbench)
data(BostonHousing)
o <- varpro(medv~.,BostonHousing)
oldpar <- par(mfrow=c(2,3))
plot(partialpro(o,nvar=3))
## same but using newdata (set to first 6 cases of the training data)
plot(partialpro(o,newdata=o$x[1:6,],nvar=3))
par(oldpar)
##------------------------------------------------------------------
##
## Boston housing with externally constructed rf learner
##
##------------------------------------------------------------------
## varpro analysis
library(mlbench)
data(BostonHousing)
o <- varpro(medv~.,BostonHousing)
## default partial pro call
pro <- partialpro(o, nvar=3)
## partial pro call using built in rf learner
mypro <- partialpro(o, nvar=3, learner=rf.learner(o))
## compare the two
oldpar <- par(mfrow=c(2,3))
plot(pro)
plot(mypro, ylab="external rf learner")
par(oldpar)
##------------------------------------------------------------------
##
## Boston housing: tree gradient boosting learner, bart learner
##
##------------------------------------------------------------------
if (library("gbm", logical.return=TRUE) &&
library("BART", logical.return=TRUE)) {
## varpro analysis
library(parallel)
library(mlbench)
data(BostonHousing)
o <- varpro(medv~.,BostonHousing)
## default partial pro call
pro <- partialpro(o, nvar=3)
## partial pro call using built in gradient boosting learner
mypro <- partialpro(o, nvar=3, learner=gbm.learner(o, n.trees=1000, n.cores=get.mc.cores()))
## partial pro call using built in bart learner
mypro2 <- partialpro(o, nvar=3, learner=bart.learner(o, mc.cores=get.mc.cores()))
## compare the learners
oldpar <- par(mfrow=c(3,3))
plot(pro)
plot(mypro, ylab="external boosting learner")
plot(mypro2, ylab="external bart learner")
par(oldpar)
}
##------------------------------------------------------------------
##
## peak vo2 with 5 year rmst
##
##------------------------------------------------------------------
data(peakVO2, package = "randomForestSRC")
oldpar <- par(mfrow=c(2,3))
plot((oo.peak<-partialpro(varpro(Surv(ttodead,died)~.,peakVO2,rmst=5),nvar=6)))
par(oldpar)
##------------------------------------------------------------------
##
## veteran data set with celltype as a factor
##
##------------------------------------------------------------------
data(veteran, package = "randomForestSRC")
dta <- veteran
dta$celltype <- factor(dta$celltype)
oldpar <- par(mfrow=c(2,3))
plot((oo.veteran<-partialpro(varpro(Surv(time, status)~., dta), nvar=6)))
par(oldpar)
##------------------------------------------------------------------
##
## iris: classification analysis showing partial effects for all classes
##
##------------------------------------------------------------------
o.iris <- varpro(Species~.,iris)
yl <- paste("log-odds", levels(iris$Species))
oldpar <- par(mfrow=c(3,2))
plot((oo.iris.1 <- partialpro(o.iris, target=1, nvar=2)),ylab=yl[1])
plot((oo.iris.2 <- partialpro(o.iris, target=2, nvar=2)),ylab=yl[2])
plot((oo.iris.3 <- partialpro(o.iris, target=3, nvar=2)),ylab=yl[3])
par(oldpar)
##------------------------------------------------------------------
##
## iowa housing data
##
##------------------------------------------------------------------
## quickly impute the data; log transform the outcome
data(housing, package = "randomForestSRC")
housing <- randomForestSRC::impute(SalePrice~., housing, splitrule="random", nimpute=1)
dta <- data.frame(data.matrix(housing))
dta$y <- log(housing$SalePrice)
dta$SalePrice <- NULL
## partial effects analysis
o.housing <- varpro(y~., dta, nvar=Inf)
oo.housing <- partialpro(o.housing,nvar=15)
oldpar <- par(mfrow=c(3,5))
plot(oo.housing)
par(oldpar)
# }
Run the code above in your browser using DataLab