# \donttest{
##------------------------------------------------------------------
##
## Boston housing
##
##------------------------------------------------------------------
library(mlbench)
data(BostonHousing)
o.boston <- varpro(medv~.,BostonHousing)
oo.boston <- partialpro(o.boston, nvar=4, learner=rf.learner(o.boston))
oldpar <- par(mfrow=c(2,4))
## parametric local estimation (default)
plot(oo.boston, ylab="parametric est.")
## non-parametric local estimation
plot(oo.boston, parametric=FALSE, ylab="non-parametric est.")
par(oldpar)
##------------------------------------------------------------------
##
## Boston housing with subsetting
##
##------------------------------------------------------------------
library(mlbench)
data(BostonHousing)
o.boston <- varpro(medv~.,BostonHousing)
oo.boston <- partialpro(o.boston, nvar=3, learner=rf.learner(o.boston))
## subset analysis
price <- BostonHousing$medv
pricef <- factor(price>median(price), labels=c("low priced","high priced"))
oldpar <- par(mfrow=c(1,1))
plot(oo.boston, subset=pricef, nvar=1)
par(oldpar)
##------------------------------------------------------------------
##
## veteran data with subsetting using celltype as a factor
##
##------------------------------------------------------------------
data(veteran, package = "randomForestSRC")
dta <- veteran
dta$celltype <- factor(dta$celltype)
o.vet <- varpro(Surv(time, status)~., dta)
oo.vet <- partialpro(o.vet, nvar=6, nsmp=Inf, learner=rf.learner(o.vet))
## partial effects, with subsetting
oldpar <- par(mfrow=c(2,3))
plot(oo.vet, subset=dta$celltype)
par(oldpar)
## causal effects, with subsetting
oldpar <- par(mfrow=c(2,3))
plot(oo.vet, subset=dta$celltype, causal=TRUE)
par(oldpar)
# }
Run the code above in your browser using DataLab