
Computes the estimation residuals of calibration.
residual_est(Y, X, weight, q, dataset = NULL, checking = TRUE)
Matrix of the variable of interest.
Matrix of the auxiliary variables for the calibration estimator. This is the matrix of the sample calibration variables.
Weight variable. One dimensional object convertible to one-column data.frame
.
Variable of the positive values accounting for heteroscedasticity. One dimensional object convertible to one-column data.frame
.
Optional survey data object convertible to data.table
.
Optional variable if this variable is TRUE, then function checks data preparation errors, otherwise not checked. This variable by default is TRUE.
A list with objects are returned by the function:
residuals
- a numeric data.table
containing the estimated residuals of calibration.
betas
- a numeric data.table
containing the estimated coefficients of calibration.
The function implements the following estimator:
Sixten Lundstrom and Carl-Erik Sarndal. Estimation in the presence of Nonresponse and Frame Imperfections. Statistics Sweden, 2001, p. 43-44.
domain
, lin.ratio
, linarpr
,
linarpt
, lingini
, lingini2
,
lingpg
, linpoormed
, linqsr
,
linrmpg
, vardom
, vardomh
,
varpoord
, variance_est
, variance_othstr
# NOT RUN {
Y <- matrix(rchisq(10, 3), 10, 1)
X <- matrix(rchisq(20, 3), 10, 2)
w <- rep(2, 10)
q <- rep(1, 10)
residual_est(Y, X, w, q)
### Test2
Y <- matrix(rchisq(10, 3), 10, 1)
X <- matrix(c(rchisq(10, 2), rchisq(10, 2) + 10), 10, 2)
w <- rep(2, 10)
q <- rep(1, 10)
residual_est(Y, X, w, q)
as.matrix(lm(Y ~ X - 1, weights = w * q)$residuals)
# }
Run the code above in your browser using DataLab