Learn R Programming

variancePartition (version 1.2.5)

sortCols: Sort variance partition statistics

Description

Sort columns returned by extractVarPart() or fitExtractVarPartModel()

Usage

sortCols(x, FUN = median, decreasing = TRUE, last = c("Residuals", "Measurement.error"), ...)
"sortCols"(x, FUN = median, decreasing = TRUE, last = c("Residuals", "Measurement.error"), ...)
"sortCols"(x, FUN = median, decreasing = TRUE, last = c("Residuals", "Measurement.error"), ...)
"sortCols"(x, FUN = median, decreasing = TRUE, last = c("Residuals", "Measurement.error"), ...)

Arguments

x
object returned by extractVarPart() or fitExtractVarPartModel()
FUN
function giving summary statistic to sort by. Defaults to median
decreasing
logical. Should the sorting be increasing or decreasing?
last
columns to be placed on the right, regardless of values in these columns
...
other arguments to sort

Value

data.frame with columns sorted by mean value, with Residuals in last column

Examples

Run this code
# library(variancePartition)

# optional step to run analysis in parallel on multicore machines
# Here, we used 4 threads
library(doParallel)
cl <- makeCluster(4)
registerDoParallel(cl)
# or by using the doSNOW package

# load simulated data:
# geneExpr: matrix of gene expression values
# info: information/metadata about each sample
data(varPartData)

# Specify variables to consider
# Age is continuous so we model it as a fixed effect
# Individual and Tissue are both categorical, so we model them as random effects
form <- ~ Age + (1|Individual) + (1|Tissue) 

# Step 1: fit linear mixed model on gene expression
# If categorical variables are specified, a linear mixed model is used
# If all variables are modeled as continuous, a linear model is used
# each entry in results is a regression model fit on a single gene
# Step 2: extract variance fractions from each model fit
# for each gene, returns fraction of variation attributable to each variable 
# Interpretation: the variance explained by each variable
# after correction for all other variables
varPart <- fitExtractVarPartModel( geneExpr, form, info )
 
# violin plot of contribution of each variable to total variance
# sort columns by median value
plotVarPart( sortCols( varPart ) )

# stop cluster
stopCluster(cl)

Run the code above in your browser using DataLab