SVAR(x, estmethod = c("scoring", "logLik"), Amat = NULL, Bmat = NULL, Ra
= NULL, Rb = NULL, ra = NULL, rb = NULL, start = NULL, max.iter = 100,
conv.crit = 0.1e-6, maxls = 1.0, lrtest = TRUE, ...)
varest
estmethod = "scoring"
).estmethod = "scoring"
).estmethod = "scoring"
).estmethod = "scoring"
).estmethod = "scoring"
).estmethod = "scoring"
).estmethod = "scoring"
).estmethod = "logLik"
).estmethod = "logLik"
).estmethod = "logLik"
).svarest
hessian = TRUE
A
hessian = TRUE
B
LRIM
is the estimated
long-run impact matrix; for all other SVAR models LRIM
is
NULL
.varest
x
call
to ?VAR
). One can now
impose restrictions on A
B
"scoring"
, the restrictions have to
be provided in explicit form:
$$vec(A) = R_a \gamma_a + r_a$$
and/or
$$vec(B) = R_b \gamma_b + r_b$$
Please note that for either an "logLik"
, then for an
Amat
Bmat
NULL
Amat
NA
NA
Amat
NULL
Amat
Bmat
NA
start
0.1
is used as
starting values for the unknown coefficients. If the function is
called with hessian = TRUE
Ase
Bse
VAR
, SVEC
, logLik
,
irf
, fevd
data(Canada)
var.2c <- VAR(Canada, p = 2, type = "const")
## Estimation method scoring
Ra <- matrix(0, nrow = 16, ncol = 5)
Ra[1, 1] <- 1
Ra[4, 2] <- 1
Ra[6, 3] <- 1
Ra[11, 4] <- 1
Ra[16, 5] <- 1
ra <- rep(0, 16)
SVAR(x = var.2c, estmethod = "scoring", Ra = Ra, Rb = NULL, ra = ra, rb
= NULL, lrtest = TRUE, start = abs(rnorm(5)), max.iter = 100, maxls =
1000, conv.crit = 1.0e-8)
## Estimation Method logLik
amat <- diag(4)
diag(amat) <- NA
amat[2, 1] <- NA
amat[4, 1] <- NA
SVAR(var.2c, estmethod = "logLik", Amat = amat, Bmat = NULL,
hessian = TRUE, method="BFGS")
Run the code above in your browser using DataLab