Learn R Programming

varycoef (version 0.3.5)

Modeling Spatially Varying Coefficients

Description

Implements a maximum likelihood estimation (MLE) method for estimation and prediction of Gaussian process-based spatially varying coefficient (SVC) models (Dambon et al. (2021a) ). Covariance tapering (Furrer et al. (2006) ) can be applied such that the method scales to large data. Further, it implements a joint variable selection of the fixed and random effects (Dambon et al. (2021b) ). The package and its capabilities are described in (Dambon et al. (2021c) ).

Copy Link

Version

Install

install.packages('varycoef')

Monthly Downloads

313

Version

0.3.5

License

GPL-2

Issues

Pull Requests

Stars

Forks

Maintainer

Jakob A. Dambon

Last Published

March 26th, 2025

Functions in varycoef (0.3.5)

house

Lucas County House Price Data
plot.SVC_mle

Plotting Residuals of SVC_mle model
varycoef

varycoef: Modeling Spatially Varying Coefficients
summary.SVC_mle

Summary Method for SVC_mle
nobs.SVC_mle

Extract Number of Observations
residuals.SVC_mle

Extact Model Residuals
logLik.SVC_mle

Extact the Likelihood
sample_SVCdata

Sample Function for GP-based SVC Model for Given Locations
predict.SVC_mle

Prediction of SVCs (and response variable)
check_cov_lower

Check Lower Bound of Covariance Parameters
SVCdata

Sampled SVC Data
SVC_mle

MLE of SVC model
SVC_mle_control

Set Parameters for SVC_mle
IC.SVC_mle

Conditional Akaike's and Bayesian Information Criteria
GLS_chol

GLS Estimate using Cholesky Factor
fitted.SVC_mle

Extact Model Fitted Values
SVC_selection

SVC Model Selection
coef.SVC_mle

Extact Mean Effects
cov_par

Extact Covariance Parameters
nlocs

Extract Number of Unique Locations
SVC_selection_control

SVC Selection Parameters
print.SVC_mle

Print Method for SVC_mle
print.summary.SVC_mle

Printing Method for summary.SVC_mle
init_bounds_optim

Setting of Optimization Bounds and Initial Values