# NOT RUN {
set.seed(123)
x <- rVASIQ(n = 1000, mu = 0.50, sigma = 0.69, tau = 0.50)
R <- range(x)
S <- seq(from = R[1], to = R[2], length.out = 1000)
hist(x, prob = TRUE, main = 'Vasicek')
lines(S, dVASIQ(x = S, mu = 0.50, sigma = 0.69, tau = 0.50), col = 2)
plot(ecdf(x))
lines(S, pVASIQ(q = S, mu = 0.50, sigma = 0.69, tau = 0.50), col = 2)
plot(quantile(x, probs = S), type = "l")
lines(qVASIQ(p = S, mu = 0.50, sigma = 0.69, tau = 0.50), col = 2)
library(gamlss)
set.seed(123)
data <- data.frame(y = rVASIQ(n = 100, mu = 0.50, sigma = 0.69, tau = 0.50))
tau <- 0.5
fit <- gamlss(y ~ 1, data = data, family = VASIQ(mu.link = 'logit', sigma.link = 'logit'))
1 /(1 + exp(-fit$mu.coefficients)); 1 /(1 + exp(-fit$sigma.coefficients))
set.seed(123)
n <- 100
x <- rbinom(n, size = 1, prob = 0.5)
eta <- 0.5 + 1 * x;
mu <- 1 / (1 + exp(-eta));
sigma <- 0.5;
y <- rVASIQ(n, mu, sigma, tau = 0.5)
data <- data.frame(y, x, tau = 0.5)
tau <- 0.5;
fit <- gamlss(y ~ x, data = data, family = VASIQ)
fittaus <- lapply(c(0.10, 0.25, 0.50, 0.75, 0.90), function(Tau)
{
tau <<- Tau;
gamlss(y ~ x, data = data, family = VASIQ)
})
sapply(fittaus, summary)
# }
Run the code above in your browser using DataLab