#generate some test data
library(vbdm)
set.seed(3)
n <- 1000
m <- 20
G <- matrix(rbinom(n*m,2,.01),n,m);
beta1 <- rbinom(m,1,.2)
y <- G%*%beta1+rnorm(n,0,1.3)
#compare implementations
res1 <- vbdm(y=y,G=G);
res2 <- vbdmR(y=y,G=G);
T5 <- summary(lm(y~rowSums(scale(G))))$coef[2,4];
cat('vbdm p-value:',res1$p.value,
'<nvbdmR>p-value:',res2$p.value,
'<nT5>p-value:',T5,'<n>')
#vbdm p-value: 0.001345869
#vbdmR p-value: 0.001345869
#T5 p-value: 0.9481797</n><keyword>vbdm</keyword>
<keyword>association</keyword>
<keyword>genetic</keyword>
<keyword>rare</keyword>
<keyword>variational</keyword></nT5></nvbdmR>Run the code above in your browser using DataLab