Learn R Programming

vcmeta (version 1.5.0)

meta.ave.cor.gen: Confidence interval for an average correlation of any type

Description

Computes the estimate, standard error, and confidence interval for an average correlation. Any type of correlation can be used (e.g., Pearson, Spearman, semipartial, factor correlation, gamma coefficient, Somers d coefficient, tetrachoric, point-biserial, biserial, correlation between latent factors, etc.).

Usage

meta.ave.cor.gen(alpha, cor, se, bystudy = TRUE)

Value

Returns a matrix. The first row is the average estimate across all studies. If bystudy is TRUE, there is 1 additional row for each study. The matrix has the following columns:

  • Estimate - estimated effect size

  • SE - standard error

  • LL - lower limit of the confidence interval

  • UL - upper limit of the confidence interval

Arguments

alpha

alpha level for 1-alpha confidence

cor

vector of estimated correlations

se

vector of standard errors

bystudy

logical to also return each study estimate (TRUE) or not

References

Bonett2008avcmeta

Examples

Run this code
cor <- c(.396, .454, .409, .502, .350)
se <- c(.104, .064, .058, .107, .086)
meta.ave.cor.gen(.05, cor, se, bystudy = TRUE)

# Should return:
#         Estimate         SE        LL        UL
# Average   0.4222 0.03853362 0.3438560 0.4947070
# Study 1   0.3960 0.10400000 0.1753200 0.5787904
# Study 2   0.4540 0.06400000 0.3200675 0.5701415
# Study 3   0.4090 0.05800000 0.2893856 0.5160375
# Study 4   0.5020 0.10700000 0.2651183 0.6817343
# Study 5   0.3500 0.08600000 0.1716402 0.5061435


Run the code above in your browser using DataLab