Learn R Programming

vcmeta (version 1.5.0)

meta.ave.cronbach: Confidence interval for an average Cronbach alpha reliability

Description

Computes the estimate, standard error, and confidence interval for an average Cronbach reliability coefficient from two or more studies.

Usage

meta.ave.cronbach(alpha, n, rel, r, bystudy = TRUE)

Value

Returns a matrix. The first row is the average estimate across all studies. If bystudy is TRUE, there is 1 additional row for each study. The matrix has the following columns:

  • Estimate - estimated effect size

  • SE - standard error

  • LL - lower limit of the confidence interval

  • UL - upper limit of the confidence interval

Arguments

alpha

alpha level for 1-alpha confidence

n

vector of sample sizes

rel

vector of sample reliabilities

r

number of measurements (e.g., items) used to compute each reliability

bystudy

logical to also return each study estimate (TRUE) or not

References

  • Bonett2010vcmeta

  • Bonett2015bvcmeta

Examples

Run this code
n <- c(583, 470, 546, 680)
rel <- c(.91, .89, .90, .89)
meta.ave.cronbach(.05, n, rel, 10, bystudy = TRUE)

# Should return:
#         Estimate          SE        LL        UL
# Average   0.8975 0.003256081 0.8911102 0.9038592
# Study 1   0.9100 0.005566064 0.8985763 0.9204108
# Study 2   0.8900 0.007579900 0.8743616 0.9041013
# Study 3   0.9000 0.006391375 0.8868623 0.9119356
# Study 4   0.8900 0.006297549 0.8771189 0.9018203


Run the code above in your browser using DataLab