Learn R Programming

vcmeta (version 1.5.0)

meta.lm.gen: Meta-regression analysis for any type of effect size

Description

This function estimates the intercept and slope coefficients in a meta-regression model where the dependent variable is any type of effect size. The estimates are OLS estimates with robust standard errors that accomodate residual heteroscedasticity.

Usage

meta.lm.gen(alpha, est, se, X)

Value

Returns a matrix. The first row is for the intercept with one additional row per predictor. The matrix has the following columns:

  • Estimate - OLS estimate

  • SE - standard error

  • z - z-value

  • p - p-value

  • LL - lower limit of the confidence interval

  • UL - upper limit of the confidence interval

Arguments

alpha

alpha level for 1-alpha confidence

est

vector of parameter estimates

se

vector of standard errors

X

matrix of predictor values

Examples

Run this code
est <- c(4.1, 4.7, 4.9, 5.7, 6.6, 7.3)
se <- c(1.2, 1.5, 1.3, 1.8, 2.0, 2.6)
x1 <- c(10, 20, 30, 40, 50, 60)
x2 <- c(1, 1, 1, 0, 0, 0)
X <- matrix(cbind(x1, x2), 6, 2)
meta.lm.gen(.05, est, se, X)

# Should return:
#      Estimate         SE           z     p         LL         UL
# b0  3.5333333 4.37468253  0.80767766 0.419 -5.0408869 12.1075535
# b1  0.0600000 0.09058835  0.66233679 0.508 -0.1175499  0.2375499
# b2 -0.1666667 2.81139793 -0.05928249 0.953 -5.6769054  5.3435720


Run the code above in your browser using DataLab