Learn R Programming

vcmeta (version 1.5.0)

se.slope: Computes a slope and standard error

Description

Computes a slope and its standard error for a simple linear regression model (random-x model) using the estimated Pearson correlation and the estimated standard deviations of the response variable and predictor variable. This function is useful in a meta-analysis of slopes of a simple linear regression model where some studies report the Pearson correlation but not the slope.

Usage

se.slope(cor, sdy, sdx, n)

Value

Returns a one-row matrix:

  • Estimate - estimated slope

  • SE - standard error

Arguments

cor

estimated Pearson correlation

sdy

estimated standard deviation of the response variable

sdx

estimated standard deviation of the predictor variable

n

sample size

References

Snedecor1980vcmeta

Examples

Run this code
se.slope(.392, 4.54, 2.89, 60)

# Should return: 
#          Estimate        SE
# Slope:  0.6158062 0.1897647


Run the code above in your browser using DataLab