Learn R Programming

vcrpart (version 0.4-1)

vcrpart-demo: Synthetic data sets

Description

Synthetic data for illustrations.

Usage

data(vcrpart_1) data(vcrpart_2) data(vcrpart_3) data(unemp)

Arguments

Format

y
ordered factor. The response variable
id, PID
factor. The subject identification vector.
wave
numeric. The wave identification vector.
treat
a dummy variable. The treatment effect.
x1, x2
numeric predictor variables.
z1, z2, z3, z2
moderator (partitioning) variables.
GHQL
self rated general happiness.
YEAR
survey year.
UNEMP
unemployed or not.
AGE
age.
FISIT
self-reported financial situation.
GENDER
gender.
UEREGION
regional unemployment.

See Also

olmm, otsplot, tvcm

Examples

Run this code
## --------------------------------------------------------- #
## generating 'vcrpart_1'
## --------------------------------------------------------- #

## create skeletton
set.seed(1)
vcrpart_1 <- data.frame(id = factor(rep(1:50, each = 4)),
                        wave = rep(1:4, 50),
                        treat = sample(0:1, 200, TRUE))

## add partitioning variables
vcrpart_1$z1 <- rnorm(50)[vcrpart_1$id]
vcrpart_1$z2 <- rnorm(200)
vcrpart_1$z3 <- factor(sample(1:2, 50, TRUE)[vcrpart_1$id])
vcrpart_1$z4 <- factor(sample(1:2, 200, TRUE))

## simulate response
eta <- 2 * vcrpart_1$treat * (vcrpart_1$z4 == "1")
eta <- eta + rnorm(50)[vcrpart_1$id] + rlogis(200)
vcrpart_1$y <- cut(-eta, c(-Inf, -1, 1, Inf), 1:3,
                   ordered_result = TRUE)


## --------------------------------------------------------- #
## generating 'vcrpart_2'
## --------------------------------------------------------- #

set.seed(1)
vcrpart_2 <- data.frame(x1 = rnorm(100),
                        x2 = rnorm(100),
                        z1 = factor(sample(1:3, 100, TRUE)),
                        z2 = factor(sample(1:3, 100, TRUE)))
vcrpart_2$y <- vcrpart_2$x1 * (vcrpart_2$z1 == "2") +
  2 * vcrpart_2$x1 * (vcrpart_2$z1 == "3")
vcrpart_2$y <- vcrpart_2$y + rnorm(100)

## --------------------------------------------------------- #
## generating 'vcrpart_3'
## --------------------------------------------------------- #

set.seed(1)
vcrpart_3 <- data.frame(x1 = rnorm(100),
                        z1 = runif(100, -pi/2, pi/2))
vcrpart_3$y <- vcrpart_3$x1 * sin(vcrpart_3$z1) + rnorm(100)

## --------------------------------------------------------- #
## generating 'unemp'
## --------------------------------------------------------- #

## create skeletton
set.seed(1)
unemp <- data.frame(PID = factor(rep(1:50, each = 4)),
                    UNEMP = rep(c(0, 0, 1, 1), 50),
               	    YEAR = rep(2001:2004, 50))

## add partitioning variables
unemp$AGE <- runif(50, 25, 60)[unemp$PID] + unemp$YEAR - 2000
unemp$FISIT <- ordered(sample(1:5, 200, replace = TRUE))
unemp$GENDER <- factor(sample(c("female", "male"), 50, replace = TRUE)[unemp$PID])
unemp$UEREGION <- runif(50, 0.02, 0.1)[unemp$PID]

## simulate response
eta <- 2 * unemp$UNEMP * (unemp$FISIT == "1" | unemp$FISIT == "2")
eta <- eta + rnorm(50)[unemp$PID] + rlogis(200)
unemp$GHQL <- cut(-eta, c(-Inf, -1, 0, 1, Inf), 1:4,
                  ordered_result = TRUE)

Run the code above in your browser using DataLab