# Load packages
library(dplyr)
library(tidyr)
# Select a subset of functions from shifted peaks data
sub_ids <-
shifted_peaks$data |>
select(data, group, id) |>
distinct() |>
group_by(data, group) |>
slice(1:4) |>
ungroup()
# Create a smaller version of shifted data
shifted_peaks_sub <-
shifted_peaks$data |>
filter(id %in% sub_ids$id)
# Extract times
shifted_peaks_times = unique(shifted_peaks_sub$t)
# Convert training data to matrix
shifted_peaks_train_matrix <-
shifted_peaks_sub |>
filter(data == "Training") |>
select(-t) |>
mutate(index = paste0("t", index)) |>
pivot_wider(names_from = index, values_from = y) |>
select(-data, -id, -group) |>
as.matrix() |>
t()
# Obtain veesa pipeline training data
veesa_train <-
prep_training_data(
f = shifted_peaks_train_matrix,
time = shifted_peaks_times,
fpca_method = "jfpca"
)
# Plot principal directions of PC1
plot_pc_diffs(
fpcs = 1,
fdasrvf = veesa_train$fpca_res,
fpca_method = "jfpca",
times = -shifted_peaks_times,
linesizes = rep(0.75,5),
mean_linesize = 0.5,
alpha = 0.9,
alpha_fill = 0.25
)
Run the code above in your browser using DataLab