## S3 method for class 'cca':
add1(object, scope, test = c("none", "permutation"),
pstep = 100, perm.max = 200, ...)
## S3 method for class 'cca':
drop1(object, scope, test = c("none", "permutation"),
pstep = 100, perm.max = 200, ...)
add1
for details.anova.cca
.step
to anova.cca
.anova.cca
.add1.default
,
drop1.default
, and anova.cca
.test = "none"
the functions will only call
add1.default
or drop1.default
. With
argument test = "permutation"
the functions will add test
results from anova.cca
. Function drop1.cca
will
call anova.cca
with argument by = "margin"
.
Function add1.cca
will implement a test for single term
additions that is not directly available in anova.cca
. Functions are used implicity in step
. The
deviance.cca
and deviance.rda
used in
step
have no firm basis, and setting argument
test = "permutation"
may help in getting useful insight into
validity of model building. Meticulous use of add1.cca
and
drop1.cca
will allow more judicious model building.
The default perm.max
is set to a low value, because
permutation tests can take a long time. It should be sufficient to
give a impression on the significances of the terms, but higher
values of perm.max
should be used if $P$ values really
are important.
add1
, drop1
and
anova.cca
for basic methods. You probably need these
functions with step
. Functions
deviance.cca
and extractAIC.cca
are used
to produce the other arguments than test results in the
output. Functions cca
, rda
and
capscale
produce result objects for these functions.data(varespec)
data(varechem)
step(rda(varespec ~ 1, varechem), reformulate(names(varechem)), test="perm")
Run the code above in your browser using DataLab